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Chapter 2

Basic Theory

Understanding Passive Magnetic Attitude Control (PMAC) begins with an overview of the

underlying equations. This chapter serves as a review of the physics governing the components of

a PMAC system. First, the basic equation for all rotational motion problems is defined. Next,

ferromagnetic theory is reviewed; this is the foundation necessary for the design and study of PMAC

systems. This dissertation uses the notation defined in Appedix A.

2.1 Euler’s Rotational Equation of Motion

Regardless of attitude parameters used to describe rotational motion, the response of a satel-

lite (or any rigid body) is given by Euler’s rotational equations of motion [65]:

[I]!̇ = �[!⇥][I]! + L (2.1)

where [I] is the 3⇥ 3 inertia matrix of the rigid body about its center of mass, ! is the 3⇥ 1 body

angular velocity vector, !̇ is the 3⇥ 1 derivative of the body angular velocity vector, L is the 3⇥ 1

external torque vector, and [.⇥] is the skew-symmetric matrix operator, defined as follows [65]:

[x⇥] =

2666664
0 �x3 x2

x3 0 �x1

�x2 x1 0

3777775 . (2.2)

Choosing a body-fixed coordinate system which aligns with the principal body axes results
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in a diagonal inertia matrix, which simplifies Equation 2.1 as follows [65]:
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where the subscript represents the component aligning with a specific principal body axis. Note

that Equation 2.3 shows that there will be angular velocity coupling for any non-symmetric rigid

body. Equations 2.1and 2.3 are the basis for all of the analytical models and simulations to follow.

The di�culty in modeling is in correctly representing the external torque L applied to the system.

2.2 Magnetic Theory

2.2.1 Magnetizing Field H vs. Magnetic Flux Density B

There exist two separate but closely related fields which both, at times, go by the name

“magnetic field”: the magnetizing field H and the magnetic flux density B. In the SI system of

units, H is in units of A/m while B is in units of Tesla (T). The relative permeability is defined as

µ
r

= B
µ0H

where the permeability of free space µ0 = 4⇡ ·10�7 T·m/A. For most materials, µ
r

is very

close to unity, meaning the material does not increase B appreciably in response to H. However,

within ferromagnetic material the situation is much di↵erent. The following definition relates B

and H: [17]

B ⌘ µ0(H+M) (2.4)

where M is the magnetization of the material within which the fields are present. Magnetization is

defined as M = m/V where m is the magnetic moment and V is the magnetized volume; thus the

magnetization M is the magnetic moment m density. For materials with µ
r

close to unity (such as

air), M is very close to zero, and Equation 2.4 reduces to B = µ0H.

However, a ferromagnetic material has a non-zero magnetization which changes in response

to an applied field. This change in M is due to microscopic changes within the material. Figure 2.1
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Figure 2.1: Example magnetic domains are shown. With zero applied field (left), the domain
orientation of the magnetic material is such that the sum magnetization of the material is small.
However, when a magnetizing field is applied to the material (right), the domains oriented parallel
to that field grow as the out-of-alignment domains shrink.
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is an example of multiple microscopic magnetic domains within a material. Each magnetic domain

is composed of a group of atoms with parallel magnetic moments. When zero magnetizing field is

present, the sum magnetization of the material is small because the magnetic moments of multiple

domains are mostly canceled. However, when a magnetizing field is applied, a domain with a

magnetic moment parallel to the field will grow as the magnetic moments of atoms close to its

boundaries align to the applied field. This change in total magnetization M is non-linear with

changes in H, and is responsible for the familiar hysteresis loop [8].

2.2.2 Hysteresis Loops

When a ferromagnetic material is subjected to a changing magnetizing field H and the

magnetic flux density B is measured, plotting B vs. H will result in a hysteresis loop such as the

one shown in Figure 2.2. A major hysteresis loop may be defined by three parameters: the coercivity

H
c

, the remanence B
r

, and the saturation B
s

. The coercivity is the applied field necessary to bring

the B field to zero, or the x-axis intercept. The remanence B
r

is the remaining B within the material

when H has been decreased to zero, or the y-axis intercept. There exists a maximum value of M

for a given material. If the applied field H is subtracted from B, the curve B/µ0 �H vs. H will

asymptotically approach this maximum magnetization, known as saturation [10]. At saturation

(and only at saturation), the magnetization M within a bar or cylinder sample is constant and

uniform. This is because all of the individual magnetic domains within the material have aligned

in the same direction. The material cannot supply any more magnetization because there are no

more domains to align. Thus, after saturation, the increase in B-field is solely due to the increase in

magnetizing field, and thus has a slope of µ0. The point on the hysteresis curve at which B
s

starts

to increase with slope µ0 is the saturation flux density. The area enclosed within the hysteresis

loop is an important feature; it represents the energy absorbed by the magnetic material per unit

volume as it completes one magnetization cycle.

A hysteresis loop may be split into a lower and upper curve which are generated by the

increasing and decreasing sections of magnetizing field cycling, respectively. The hysteresis fitting
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Figure 2.2: An example magnetic flux density B vs. magnetizing field H hysteresis loop. The
coercivity H

c

, remanence B
r

, and saturation B
s

are shown. The area encircled by the hysteresis
loop is the energy loss per cycle per unit volume. After saturation B

s

, the slope of the hysteresis
loop is simply µ0.
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described in Section 7.3 relies upon this bifurcation. The upper and lower curves of the hysteresis

loop will be odd-symmetric if the cycle amplitude remains constant and there is no DC o↵set in

the magnetizing field. This property will also be used in the hysteresis fitting.

2.2.3 Magnetic Property Dependencies

The shape of a magnetic hysteresis loop depends on many things, but some of the more

important factors include: material composition, degree of heat treatment, applied H-field extrema,

applied field o↵sets, frequency of H-field cycling, and sample dimensions. The material itself

governs the saturation magnetization amplitude (the applied field at which saturation occurs and

the shape of the curve from 0 A/m to saturation are not determined solely by the material as they

are structure-specific); the inherent crystal structure of the material composition defines “easy”

directions of magnetization [17]. Note that most nickel-iron alloys (such as HyMu-80) have low

magnetocrystalline anisotropy after heat treatment, meaning the ease of magnetization is about

the same regardless of direction [5].

Heat treatment can restore the crystalline structure of a material that is damaged during cold

work, such as extruding, rolling or bending. Heat treatment also serves to break down the walls

between magnetic domains, increasing the mean domain size and allowing the magnetic material to

be magnetized to higher levels at lower magnetizing fields. Hysteresis loops before and after heat

treatment will likely be very di↵erent.

The magnitude of the applied field cycle will change the resultant hysteresis loop [17]; this

e↵ect is included within the Flatley hysteresis model (described in Section 8.1.6.5). Figure 2.3

shows the output of the Flatley hysteresis model for cycle amplitudes of ±2 A/m, ±3 A/m, and

±8 A/m. Note that the loop area decreases substantially as the applied field decreases. A constant

o↵set in the applied field can also distort the hysteresis loop. In the case of a satellite PMAC

system, such a constant o↵set may be provided by proximity to current loops or a bar magnet. As

shown in Figure 2.4, an H-field o↵set pushes the hysteresis loop away from the origin. If the cycle

amplitude approaches the material saturation, this magnetizing field o↵set can result in a smaller
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loop area, and thus, decreased dampening.

The frequency of applied field cycling can e↵ect the hysteresis loop measured. Figure 2.5

shows how an increase in cycle frequency tends to increase the coercivity H
c

. More energy is used

to switch the magnetic domains at higher cycle frequencies. However, a DC hysteresis curve (usually

defined as an applied field cycle frequency of 10 Hz or less) is minimally a↵ected by frequency. All

hysteresis loops measured in Section 7.3 are produced by applying a field with a cycle frequency of

less than 1 Hz. The hysteresis loop is also a↵ected by the demagnetizing field of the test sample,

which is further examined in the following section.

2.2.4 Demagnetizing Fields

Anyone who has handled magnets is familiar with the idea of a magnetic pole. Consider a

bar magnet that has been magnetized by a magnetizing field H in the left to right axial direction.

After H has been removed, there exist two magnetic poles, the south pole on the left and north pole

on the right. Figure 2.6 shows the H and B fields resultant of the poles. As shown, there exists an

H field outside and inside the magnet. Outside the magnet, the simple relation B = µ0H holds.

However, inside the magnet, an H field opposes the B field and is termed the demagnetization

field H
d

. Equation 2.4 becomes B = µ0(�H
d

+ M). If an external applied field H
a

is present,

Equation 2.4 becomes:

B = µ0(Ha

�H
d

+M). (2.5)

Demagnetizing fields are di�cult to calculate, but are directly proportional to the magnetiza-

tion of the bar magnet: H
d

= N
d

M where N
d

is the demagnetization factor. The demagnetization

factor varies mainly as a function of the length to diameter ratio L/D of the sample, but also varies

as a function of magnetization: di↵erent N
d

values are used at values close or far from saturation.

These limitations make it especially complicated to calculate the hysteresis loop of a material;

empirical determination is much more accurate.

One way to measure the hysteresis loop of a material without having to account for demagne-

tizing fields is to use a toroid-shaped sample. Lines of magnetic flux density B, which follow closed
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Figure 2.3: Example B vs. H hysteresis loops for various applied field cycle magnitudes. Figure was
generated using the Flatley hysteresis model and the HyMu-80 closed magnetic circuit hysteresis
parameters (see Table 7.2).
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Figure 2.4: Example B vs. H hysteresis loops for various applied field DC o↵sets. Figure was
generated using the Flatley hysteresis model and the HyMu-80 closed magnetic circuit hysteresis
parameters (see Table 7.2). All three datasets are generated using an AC magnetizing field cycle
amplitude of ±2 A/m.
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Figure 2.5: The e↵ect of applied field cycle frequency on the hysteresis loop. The coercivity H
c

and
the loop area increase as the hysteresis loop is cycled at increasing frequency. Image used from [8].
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Figure 2.6: (a) H-Field and (b) B-Field of a bar magnet when there is zero applied field. Note that
M > 0 only within the magnet, and that outside the magnet, B = µ0H. Figure adapted from [17].
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loops, lie entirely within such a sample. This type of sample is known as a closed magnetic circuit.

This means that, even when magnetized, no poles are present in such a sample, and thus no de-

magnetizing field H
d

is present in the sample. The hysteresis loop measured from a toroidal sample

would be B vs. Htrue. The true magnetic field within the material is a combination of the applied

magnetizing field field and the demagnetizing field generated by the material: Htrue = H
a

� H
d

.

Of course, if H
d

= 0 (as in a toroidal sample), then Htrue = H
a

. However, this is not the case for

open magnetic circuit samples. Because the closed magnetic circuit hysteresis loop B vs. Htrue is

invariant with respect to the dimensions of the material, this hysteresis loop is generally what is

quoted on many material data sheets.

However, the closed magnetic circuit hysteresis loop is not a good representation of the true

open magnetic circuit hysteresis loop for the rods or strips typically used in a PMAC system. Testing

to date has shown that the loop areas loops di↵er by one to two orders of magnitude [63]. As the loop

area is directly related to the dampening provided by each hysteresis rod, this has vast implications

for a numerical simulation of the attitude dynamics. Section 7.3 presents measurements of the true

open magnetic circuit loops for hysteresis rods which are typically used in PMAC systems.

2.2.5 Magnetic Torques

All magnetic torques obey the following formula:

L = m⇥B (2.6)

where m is the magnetic moment vector and B is the local magnetic flux density vector. In most

situations, B is due to earth’s local magnetic field alone. Thus, the torque is based on the value of

m for various magnetic materials. The high coercivity of a permanent magnet prevents the earth

field from changing its magnetization, thus for a bar magnet, m is constant and may be measured

(see Section 7.2). However, determining the magnetic moment of a hysteresis rod is more di�cult.
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2.2.6 Hysteresis Rods

A PMAC system necessarily uses bar- or cylinder-shaped hysteresis material. This is required

because such samples are magnetized mainly in the axial direction, which produces a torque as de-

fined by Equation 2.6. For these open magnetic samples the demagnetizing field H
d

is unavoidable,

and the L/D ratio is limited by the dimensions of the spacecraft and the necessary volume of hys-

teresis material. This means that B measured for an open magnetic circuit (with demagnetization)

will be significantly less than B measured for a closed magnetic circuit.

As shown in Equation 2.6, the component of B parallel to the magnetic moment m does

not produce a torque. Assuming the majority of uniform magnetization is parallel to each rod’s

axis, the rod produces a negligible B-field perpendicular to its axial direction. Thus, sets of rods

which are co-planar but have some separation should have minimal interaction. The general rule

of thumb for hysteresis rod placement is that the perpendicular distance between two rods should

be greater than 30-40% of their length [57]. Given this separation, the assumption is made that

the interaction of multiple hysteresis rods may be ignored in analysis. Thus, the magnetic flux

density B on the right side of Equation 2.6 is generated solely by the local earth B-field. This

means that the magnetic moment m is the only characteristic of the rod which contributes to the

torque produced by the rod.

Therefore, in order to model the torque due to the hysteresis rods, the magnetic moment m

of the rod must be defined. First, it is assumed that the magnetic moment is entirely parallel to

the rod. Using m = M/V , H
d

= �N
d

M and Equation 2.5, the magnetic moment parallel to the

rod for an open magnetic circuit may be defined as [17]:

m = V

✓
B/µ0 �H

a

1�N
d

◆
(2.7)

where B is the average parallel magnetic flux density within the rod and H
a

is the applied field

parallel to the rod. Many groups ([47],[61],[58],[63],[26]) simplify Equation 2.7 to m = V B/µ0. It

is feasible to ignore N
d

in the denominator for rods with L/D > 30 [17], as the error is < 2% (the

demagnetizing field has not been ignored, it is taken into account by emperically measuring B).
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However, the hysteresis curve must be measured to ensure H
a

is negligible with respect to B/µ0.

None of the groups reviewed in Section 3.3 state their assumptions in using the simplified formula.

Some make the grave mistake of assumming B within Equation 2.7 is given by a material data sheet

(usually B vs. Htrue). This assumption saves one from having to measure the hysteresis loop, but

also introduces serious errors because it ignores the e↵ect of the demagnetizing field. The B used

within Equation 2.7 is the average interior magnetic flux density (across the length of the sample),

and must be measured for the open magnetic circuit to produce an accurate magnetic moment m.

The B vs. H
a

hysteresis loop is used in the PMAC dynamics simulation (see Section 8) because it

directly relates B to the earth H-field encountered by the spacecraft, which is H
a

.


