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Chapter 3

Background

Although di�cult to model due to the nonlinear behavior of hysteresis, Passive Magnetic

Attitude Control (PMAC) is simple to realize on a spacecraft: it only requires the installation of

a bar magnet and a few hysteresis rods. Thus, early satellites made considerable use of PMAC.

Small satellites echo this trend today as electronic components shrink faster than attitude control

actuators. The previous PMAC analysis is traced through the mission history of PMAC satellites as

well as the analytic and numeric models which have been developed in parallel with these missions.

A review of PMAC hysteresis rod measurement to date is presented at the end of the chapter.

We find no previous work which verifies the performance of a PMAC attitude dynamics

simulation through comparison to on-orbit attitude data from a PMAC satellite. Neither do we

find previous work which measures hysteresis rod performance as a↵ected by the system-level PMAC

component magnetization. There is much to be learned in investigating these avenues.

3.1 Mission History

It is not surprising that small satellites today echo the development of large satellites in the

early space race. Although satellite electronics shrink very quickly, it is hard for precision actuation

devices to keep pace. PMAC is in use today just as it was when it was designed in the 1960’s.

Studying the missions which have used PMAC sheds light on the type of missions for which it is

best suited, and tells the story of its development over time.
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3.1.1 Early History of Passive Magnetic Attitude Control

Passive attitude control systems were used in early spacecraft because software and actuation

hardware were not yet developed. As spacecraft developed, simple attitude control systems such as

spin-stabilization gave way to more complicated (yet still passive) methods, such as gravity-gradient

and passive magnetic attitude control.

Passive Magnetic Attitude Control (PMAC) was first used in space in April of 1960 [20].

Researchers at Johns Hopkins Applied Physics Laboratory came up with the method for the Navy’s

Transit experimental satellite program. The first satellite to use a passive magnetic attitude control

system was Transit 1B (Transit 1A did not achieve orbit due to a launch failure); it used PMAC to

point the spacecraft toward ground stations in the northern hemisphere. Transit 1B was a spherical

satellite with a 10 A·m2 bar magnet and two sets of permeable rods, both arranged arranged in a

crosshatch pattern. Both sets of permeable rods had 4 rods each, with the second set rotated 45�

from the first set, yet still within a plane perpendicular to the bar magnet. The satellite had an

initial spin of 17.5 rad/s, which was reduced to 16.3 rad/s after 7 days (this decrease is likely due

to the PMAC system). A mechanical de-spin via release of weights from the spin axis reduced the

spin rate to 0.5 rad/s. The satellite spin rate decreased to 0.03 rad/s (1.8 deg/s) after another 7

days. The Transit 1B PMAC system was successful enough for Transit 2A to be launched without

the mechanical de-spin included; it relied solely on the PMAC system. Transit 2A decreased from

5.0 rad/s to 0.13 rad/s (7.2 deg/s) within 24 days [25]. The analytical model used to analyze the

PMAC performance of both Transit satellites is presented in Section 3.2.1.

Due to the success of the Transit 1B and 2A, PMAC was used for Injun 1, the first satellite

built entirely by a university [27]. Launched in 1961, Injun 1 failed to separate from GREB, another

satellite that was on the same launch [9]. A later satellite from the University of Iowa under the

supervision of Dr. Van Allen, Injun 3, was launched in 1963 into a 237 ⇥ 2785 km, 70.4� inclination

orbit. Its PMAC system aligned to an average deviation of less than 10� from the magnetic field

line after a period of 2 weeks [29].
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Figure 3.1: The Transit 1B Satellite, the first satellite to use Passive Magnetic Attitude Stabiliza-
tion. [1]
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Figure 3.2: The Injun 3 Satellite, an early university satellite which successful aligned to the
magnetic field using PMAC. [56]

The first German satellite Azur was launched in 1969 and carried a 97 A·m2 bar magnet.

Azur damped from an initial spin rate of 1.25 rad/s down to 0.01 rad/s (0.6 deg/s) and a magnetic

field o↵set of less than 15� within 2.25 days [53].

This section is not an exhaustive list. Other early satellites using PMAC include Transit

2A (1960), ESRO 1A (1968), ESRO 1B (1969), Exos (1978) and Magion (1978) [57]. By the mid

1970’s, analysis of PMAC was mostly comprised of analytical models. The use of PMAC begins to

wane at this point, as active control systems enable specialized pointing methods. The di�culty of

accurately predicting PMAC performance was likely a driver of its decreased use.

3.1.2 Modern Use of Passive Magnetic Attitude Control

As computers and actuators decrease in size, the satellite community has grown increasingly

interested in small satellites due to their low launch costs and simplicity. While technology is in

development to control these satellites using small actuators, the small satellite community has

witnessed a return to passive methods. These methods are especially popular among student

missions or technology demonstrations where component price and complexity join size as major
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Figure 3.3: Azur, the first German satellite, used passive magnetic attitude control [53].
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design factors. PMAC is also popular among science missions which benefit from alignment with

the local magnetic field.

The 6kg Swedish Munin satellite contained a PMAC system. During design, the satellite

used the following requirement: align to within 15� of the earth’s magnetic field lines within three

weeks. Ovchinnikov developed a numerical attitude simulation and predicted that in order to meet

the setting time requirement, the initial angular velocity had to remain less than 10.5 deg/s on

each axis [57]. The satellite launched in November 2000 but contact was lost in February 2001.

Johnsson indicates that results from the attitude determination analysis are questionable [38].

Attitude determination analysis from Munin has not been released to date. Thus, the Ovchinnikov

attitude simulation has not been validated; details of the simulation are described in Section 3.3.2.

UNISAT-3 was designed and built by students at the University of Rome. It was launched

into a 710km x 790km, 98� inclination orbit on June 29, 2005, and used a PMAC system. The

PMAC system used a permanent magnetic with magnetic moment 1 A·m2 and one hysteresis rod

per axis with dimensions 15cm⇥0.1cm. The only dedicated attitude measurement device was a

3-axis magnetometer. The magnetometer and solar panel currents were used to piece together

its three-axis attitude. The Z-axis of the magnetometer did not function on-orbit, so the total

magnetic field was estimated using the spacecraft position and the IGRF magnetic field model [62].

UNISAT-3 oscillated about the earth magnetic field at an amplitude of about 30�. The team

believed this response was due to under performing hysteresis rods [63].

UNISAT-4 was next in the series of educational satellites. Researchers at the University of

Rome determined that the magnetic properties of the hysteresis rods must be measured, as specific

dimensions and orientations of the rods could change their performance. They developed a rig to

measure the hysteresis parameters of the rods. After careful design, they used a bar magnet of 1

A·m2 and eight hysteresis rods on both orthogonal axes to the bar magnet. The hysteresis rods had

a square cross-section with dimensions 150mm ⇥ 1mm ⇥ 1mm and were composed of permalloy.

After the rods were heat treated, measurements showed that their hysteresis parameters were well

below the quoted hysteresis parameters for the material [63]. Unfortunately, due to the 2006 Dnepr
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Figure 3.4: Artists conception of Munin, a Swedish small satellite which used PMAC [55].

Figure 3.5: The UNISAT-4 satellite, a student satellite built by the University of Rome [63].
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launch failure, UNISAT-4 did not achieve orbit [32].

The next satellite from the University of Rome, EduSat, continued their work on PMAC

development. Working with the University of Keldysh Institute of Applied Mathematics (KIAM),

a new hysteresis parameter experimental set-up was developed. This set-up allows the hysteresis

parameters to be measured along the length of the hysteresis rod. Researchers found that the

maximum magnetic flux density was highest at the center of the hysteresis rod and decreased

towards the ends [4]. The hysteresis rod measurements described in Section 7.3 use a sense coil

with a length equivalent to the hysteresis rod length; this ensures that the average interior magnetic

flux density of the rod is measured.

In 2001, the 23 kg Sapphire microsatellite was launched. Designed by Stanford university, it

used a PMAC system to de-spin the satellite and ensure that an imaging sensor was pointed toward

earth in the northern hemisphere. The communication antennas were also painted to impart a

small radiation pressure torque which ensured a roll to prevent one side from always facing the sun

(this attitude control is known as the ”controlled tumble” and has been used for many AMSAT

spacecraft). Sapphire was ejected from the launch vehicle with a tumble of multiple degrees per

minute. This spin was reduced to 1.2 rpm about the major inertia axis with a few days due to the

PMAC system. Radiation pressure caused the satellite to settle to 0.1 rpm [74].

3.1.3 CubeSats using Passive Magnetic Attitude Control

In summer of 2000, Bob Twiggs and researchers at Stanford university envisioned a new

nanosatellite standard they called CubeSat [76]. This standard was soon accepted by universities

across the country; PMAC was used as the stabilization method for many of these satellites. One of

these early CubeSats that used PMAC was QuakeSat, built by Stanford university [52]. Launched in

June 2003, QuakeSat relied upon solar panel currents and a single IR sensor to determine attitude.

Unfortunately, the loss of a multiplexer early in the mission meant that the solar array currents

were not available. QuakeSat used a 2.933 A·m2 bar magnet in combination with two 0.6cm ⇥

1.2cm ⇥ 31cm rods of permalloy 49NM along the length of the satellite [69]. Using their single IR
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sensor, the QuakeSat team estimated that their satellite was generally nadir pointing, with a roll

rate of once every 15 - 20 min [7].

Figure 3.6: Artist’s conception of the QuakeSat CubeSat. Built by Standford University, QuakeSat
used a PMAC system [52].

The Radio Aurora Explorer (RAX) was the first CubeSat funded by the National Science

Foundation to study space weather [18]. Built by the University of Michigan, the RAX mission

is actually composed of two satellites, RAX-1 and RAX-2; RAX-2 was launched to continue the

science mission after the RAX-1 solar panels were found to be faulty [19].

The RAX team attempted to calculate the performance of its PMAC system using a dynamic

model. Students at the University of Michigan developed the Lie Group Variational Integrator

(LGVI). The LGVI is designed to model the rotation of a rigid body while conserving the constraints

of the rotation matrix as well as the system energy [58]. More detail on this integrator is found in

Section 8.1.7.2.

The RAX team used the LGVI to developed a simulation to predict the response of their

CubeSat. However, they ignored the possibility of the satellite bar magnet saturating the hysteresis

rods. To simplify integration, the team designed the PMAC system such that the bar magnet and

hysteresis rods are on the same 10cm⇥10cm board which fits the form factor of other electronics
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Figure 3.7: The RAX-1 3U CubeSat. Built by the University of Michigan, RAX-1 and RAX-2 used
identical PMAC systems [19].
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boards; this is not an optimal design as will be explained in Chapter 5. The team also used

the closed-magnetic circuit hysteresis parameters as input to their numeric model; this results in a

gross overestimate of the hysteresis dampening performance (see Section 7.3). These issues seriously

degrade the predictive capability of the simulation.

The settling time of RAX-1 is not known as attitude data was only collected for three single-

orbit periods, each 15 days apart [71]. However, RAX-2 attitude data shows that the satellite

converges to within 20� of the local magnetic field two months after launch [73]. The predicted

settling time of the RAX mission has not been published but personal communication with a

member of the RAX team indicates the satellite was expected to align within days. This large

discrepancy indicates that accurate PMAC dynamics simulation is both di�cult and highly useful.

Also, the RAX-2 satellite uses a bar magnet magnetic moment of 3.2 A·m2 [73]; this powerful

magnet (relative to a CubeSat inertia matrix) may have introduced the high initial rotation rates

experienced by RAX-2 (see Section 5.2).

3.2 Analytical Models

An analytical model of PMAC is complicated by the use of hysteresis rods, whose torque

depends on both the current orientation and the previous magnetism induced within the rods.

Further complication is introduced when considering a real earth field, which is di�cult to model.

To combat this, the analytical models derived below simplify the hysteresis e↵ect by assuming some

average damping, usually in the form of an angular velocity coe�cient. The earth’s magnetic field

is simplified with either the dipole assumption or an average magnetic field strength.

3.2.1 Fischell Analytical Model (1961)

Robert Fischell derived the first analytical model of PMAC for the Transit satellite pro-

gram [25]. He starts with the assumption of a completely symmetric satellite (I = I
xx

= I
yy

= I
zz

)

and the magnitude of magnetic torque ⌧ = Mµ0H0 sin ✓ where M is the magnetic moment of the

bar magnet, µ0 is the permeability of free space, H0 is the earth’s local magnetizing field, and ✓
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is the angle between the bar magnet and the earth field direction. Fischell chooses to ignore the

hysteresis torque at first in order to form Euler’s rotational equations of motion for an undamped

satellite axis:

I
d2✓

dt2
+Mµ0H0 sin ✓ = 0. (3.1)

Then, after making the small angle assumption for ✓, the undamped angle relative to the magnetic

field is given as ✓
N

= ✓0 cos(2⇡ft) where the natural frequency f is:

f =
1

2⇡

r
Mµ0H0

I
. (3.2)

Fischell, ignoring other disturbance torques, then defines the energy loss per time due to hysteresis

cycling as:

dE

dt
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8⇡2

r
Mµ0H0

I

I
HdB (3.3)

where V is the volume of the hysteresis material, N is the number of rods, and
H
HdB is the area

of the hysteresis loop. Fischell obtained the hysteresis loop of the chosen rods experimentally and

determined that the hysteresis loop area may be approximated as
H
HdB = ↵H3

m

where H
m

is the

peak magnetizing field of the hysteresis loop and ↵ is an empirically-derived constant. The peak

magnetizing field for a rod perpendicular to the local earth field is given as H
m

= H0 sin ✓m where

✓
m

is the max angular displacement between the bar magnet and the earth field.
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m
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Here Fischell chooses to define a constant k = ↵NV

8⇡2

q
Mµ0
I

H
7/2
0 . Now, the potential energy of the

bar magnet can be defined by integration of the magnitude of magnetic torque from equilibrium to

the max displacement:

E(✓) =

Z
✓m

0
Mµ0H0 sin ✓d✓ = Mµ0H0 (1� cos ✓

m

) . (3.5)

Now, taking the derivative of Equation 3.5 with respect to time, combining with Equation 3.4, and

separating variables yields:

� d✓
m

sin2 ✓
m

=
kdt

Mµ0H0
(3.6)
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which becomes the following after integration:

cot ✓
m

=
k

Mµ0H0
t+ C. (3.7)

The constant can be solved for by defining an angle ✓0 to which the satellite is displaced at time

t = 0. Thus, C = cot ✓0, and the following is the expression for the maximum angular displacement

over time:

✓
m

(t) = arccos

✓
k

Mµ0H0
t+ cot(✓0)

◆
. (3.8)

Finally, Fischell combines the undamped angle with the maximum damped angle to yield the angle

of displacement from the magnetic field with respect to time:

✓(t) = arccos

✓
k

Mµ0H0
t+ cot(✓0)

◆
cos 2⇡ft. (3.9)

The settling time is easily found by modifying Equation 3.8:

tsettle =
Mµ0H0

k
(cot ✓

f

� cot ✓0) (3.10)

where ✓
f

is the final angular displacement. To recap, Fischell has defined an analytical solution

with the following assumptions:

• Entirely symmetric satellite

• Small angle between B-field & bar magnet axis

• Orbit-average magnetic field strength used instead of position-dependent vector

• No other (non-magnetic) disturbance torques

• Cubic approximation of hysteresis area

The above assumptions are quite limiting. Even with a symmetric satellite, this analytical model

is ine↵ective for the beginning of dampening, where high angular velocities are typical.
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3.2.2 Mesch et al. Analytical Model (1966)

Mesch et al. developed a more comprehensive analytical model [22]. They start with Equa-

tion 2.3, then define the angular velocities in terms of Euler angle rates. However, here they make

the assumption that the Euler angles are always a small angle for a satellite with attitude control.

A unique aspect of this model is the development of the equations of motion in terms of the orbit

true anomaly instead of time, allowing a dipole magnetic field to be included within the model.

However, there are many assumptions made:

• Angle between B-field & bar magnet is a small angle

• Polar orbit (inclination = 90�)

• Dipole magnetic field

• Dampening torque is in constant proportion to angular velocity

Due to these assumptions, this model was generally used to determine the periodic motion

of a satellite after it had settled to oscillating about the magnetic field.

3.2.3 Kammüller Analytical Model (1971)

Kammüller takes a di↵erent approach [39], [40]. Rather than starting from Euler’s rotational

equations of motion (Equation 2.3), the Lagrangian is calculated assuming a 3-1-3 Euler angle set.

By using the Lagrangian equations of motion, Kammüller is able to account for the gyroscopic

torques of the spacecraft without solving six coupled equations of motion. For the Lagrangian,

the potential energy is defined as Equation 3.5, but with a transformation used to convert ✓
m

to a

function of Euler angles and the magnetic declination. A series expansion accounts for the magnetic

field strength and the magnetic declination as a function of the orbital frequency and time. Here

Kammüller introduces a “slow” time variable ⌧ = !
e

t where !
e

is the earth’s rotation rate. This

assumption, based on the significant di↵erence between the earth’s rotation rate and the orbital
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frequency, allows Kammüller to treat some timescales as constant with respect to the “fast” time

variable t.

Kammüller shows that, for near-polar orbits (i⇡ 90�), there exists a roll resonance for specific

values of � = (I
xx

�I
yy

)/I
zz

, where I
xx

is the maximum moment of inertia, and I
zz

is the minimum.

He points out that there are three possible solutions to the roll equation (after transients have been

damped): a) nonresonant rest-position, b) resonant oscillation, and c) resonant rotational solutions.

The roll resonance is due to coupling between pitch and roll motions of the spacecraft, and thus

changes depending on the spacecraft �. By changing the spacecraft �, the desired stability (a, b,

or c) may be set.

Kammüller makes the following assumptions in his analysis:

• Circular polar orbit

• Dipole Earth field

• Pure pitch (major inertia axis) motion while following magnetic field lines

• “Slow” time used to consider diurnal rotation negligible with respect to orbital motion

• Hysteresis dampening described by matrix of dampening coe�cients multiplied by Euler

angles and Euler angle rates

Other analytical PMAC models could not be found in the literature. To date, none of the

analytical models have solved for the settling time of a non-symmetric satellite.

3.3 Numerical Simulations

Numerical models have the advantage of not making the simplifying assumptions of the

analytic models. As a result, numerical models have the potential to accurately predict the full

dynamics of the system. However, numerical models have their own disadvantages; a balance must

be sought between simulation accuracy and computational cost. Also, the model itself can introduce
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errors if not properly defined. Numerical models which have been used in the past are presented

below.

3.3.1 Chen (1965)

Chen [15] uses a 3-1-3 Euler angle set to describe the rotation of the body frame with respect

to the inertial frame. An inclined dipole is used to model the earth field. An interesting note

is the inclusion of another dampening torque. This “shorted coil” dampening torque is due to

closed windings about each hysteresis rod which have current induced within them due to the earth

field. This current, in turn, torques the satellite according to Equation 2.6. The hysteresis loop is

modeled as a parallelogram, which does not account for minor hysteresis loops which occur as the

satellite starts to track the earth field. After the torques are defined, Equation 2.3 is used to define

the equations of motion. In order to avoid the singularity associated with Euler angles, quaternions

are used to model the attitude during integration.

Chen uses the following assumptions:

• Dipole Earth field

• “Shorted Coil” dampening in addition to hysteresis rod dampening

• Parallelogram hysteresis loop

3.3.2 Ovchinnikov & Penkov (2002) - Munin

Ovchinnikov & Penkov investigate the motion of a 6 kg axisymmetric satellite with a bar

magnet and hysteresis dampening [57]. First, a magnetic frame is defined by the direction of the

local earth field and the orbit plane of the satellite. The earth field is modeled as a dipole, and a

parallelogram model is used for the hysteresis loop. Equation 2.1 serves as the equation of motion.

A 2-1-3 Euler angle is used as attitude parameters. The equations of motion are then written

in dimensionless form and a few key assumptions are made: a strong bar magnet dominates the

external torques and the initial angular velocity of the satellite about the symmetry axis is roughly
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equivalent to the mean motion of the satellite. These assumptions allow the average equations of

motion to be developed. These average equations of motion are investigated with numeric analysis.

Ovchinnikov & Penkov use the following assumptions:

• Strong bar magnet

• “Improved” Parallelogram model (able to generate minor loops near origin only)

• Averaged equations of motion

3.3.3 CUBESIM (2004) and SNAP (2009)

Both CUBESIM and the Smart Nano-satellite Attitude Propagator (SNAP) are PMAC at-

titude simulations developed by students (Levesque [47] and Rawashdeh [61], respectively) in an

attempt to simulate the response of a PMAC system for satellites they were working on at the time.

Both models use the Matlab Simulink environment along with the Dormand-Prince 45 variational

numeric integrator (generally known as the DOPRI method, known in MATLAB as ode45), and

both models use the parallelogram model to determine the hysteresis torque given the magnetic

field input. Both models include the e↵ect of gravity gradient torque, but ignore the other envi-

ronmental torques (drag, solar pressure, magnetic residual, eddy current). Finally, both models

use the closed magnetic circuit hysteresis parameters to form their parallelogram models. In both

models, these assumptions and incorrect inputs add up to a simulation that converges very quickly

(when CSSWE initial conditions are input, CUBESIM converges to the local magnetic field within

a few orbits). Also, the CUBESIM output was not found to converge as lower time steps were used.

Frustrations with CUBESIM inconsistencies was one of the motivations for work on a new PMAC

simulation.

CUBESIM and SNAP use the following assumptions:

• Parallelogram hysteresis loop (no minor loops)

• Runge-Kutta45 numeric integrator
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• No environmental torques included except gravity gradient

• Closed magnetic circuit hysteresis parameters

3.3.4 Park et al. (2010) & Lee et al. (2011) - RAX

The RAX CubeSat team recognized the faults with previous PMAC simulation tools [47].

They developed their own numeric integration model based on Equation 2.3. The RAX model

includes magnetic and hysteresis torques, and rotation matrices are the chosen attitude coordinates.

The RAX team uses the Lie Group Variational Integrator (LGVI) developed by Lee [45] at the

University of Michigan. This energy-conserving numeric integrator is used in an attempt to limit

system energy change due to the numeric integrator itself; the LGVI is described in Section 8.1.7

and tested versus other integrators in Section 8.3.

The RAX simulation uses the Flatley empirically-derived hysteresis loop model (described

in Section 8.1.6.5). Unfortunately, the RAX simulation incorrectly uses closed magnetic circuit

hysteresis parameters. Although students at the University of Michigan developed this PMAC

simulator, only preliminary applications have been performed [58]. To date, the RAX team has

not validated the performance of their simulation.

3.4 Hysteresis Measurement to Date

Only one other small satellite research group has made a priority of hysteresis measure-

ment. Most teams incorrectly assume that the closed magnetic circuit hysteresis parameters of

the hysteresis rod material may be used for simulation purposes, ([47],[61],[58]) but as is shown in

Section 7.3, this is not the case. The very first PMAC mission, Transit 1B, measured the area of

its hysteresis loops and used it as an input to its analytical model [25]. Of the modern missions,

only the University of Rome (UNISAT-4, EduSat) have measured their rod hysteresis loops.

The UNISAT-4 team measured the hysteresis rod by placing a magnetometer close to one

end of the rod and measuring the B-field resultant of magnetization changes within the rod [63].
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However, their sense coil was not surrounding the hysteresis rod, they required the use of a scaling

factor to translate from measured data away from the rod to some internal average B-field within

the rod. Also, their measurement technique lacks the ability to perform system measurements.

However, they did achieve measured hysteresis loops within an order of magnitude of those presented

in Section 7.3.

Recently, the University of Rome built a new measurement system which uses a forcing coil

and sense coil to determine the hysteresis parameters as a function of rod length (because the

sense coil is much shorter than the hysteresis rod). The results from this measurement system

yield hysteresis parameters (H
c

= 1.135 A/m, B
r

= 0.0073 Tesla, B
s

= 0.1315 Tesla, Area=0.4263

J·m�3 for a 200 mm ⇥ 1 mm ⇥ 1 mm HyMu-80 rod [5]) which are vastly di↵erent from the

closed magnetic circuit material hysteresis parameters (see Table 7.2). Other work measuring

PMAC hysteresis rods is an analysis of various magnetic materials which could be used to fabricate

hysteresis rods [24].


