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Chapter 8

Simulation

Inaccurate prediction of Passive Magnetic Attitude Control (PMAC) performance has hin-

dered the use of such systems for some satellite missions. The purpose of the software work is to

develop a numerical simulation which accurately describes the response of a satellite using a PMAC

system. Such a simulation could be used to predict the settling time of a satellite using a PMAC

system. The settling time is considered the most important system characteristic as it allows for

mission planning using predictive simulation. To this end, a simulation is developed and defined

below in terms of its major components; this will allow future mission teams to use it for predictive

mission requirements verification.

The simulation is built within the MATLAB R� environment, which is used to numerically

integrate the equations of motion. Models are defined for each environmental torque at low earth

orbit. An orbit propagation method is defined because many environmental torques are dependent

on satellite position. With the simulation components fully defined, analysis is performed to answer

basic questions about the expectations of the simulation. Finally, the simulation output is shown

given nominal input; the output is compared to the on-orbit data analyzed in Chapter 6.

We seek to understand the PMAC system behavior where possible, but here we do not aim

to fully describe the underlying dynamics. Instead, the PMAC simulation development and testing

given select initial inputs are described. Whenever possible, simulation results which shed light

on the underlying dynamics are discussed. However, the scope of this research is limited to the

simulation development and validation. Further testing given a wider variety of initial input may
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be helpful in a deeper understanding of the general dynamics of a PMAC satellite.

8.1 Components

The attitude simulation is built from many components. Each component is defined in the

subsections below. The reader should be able to recreate the simulation using the information

described in this section.

8.1.1 Frames

There are three frames, or coordinate systems, used in the PMAC simulation. The first of

these is the Earth Centered Inertial (ECI) frame. The ECI frame I{X Y Z} has its origin at the

center of earth, with direction vectors defined as follows: IX lies in earth’s equatorial plane and

is parallel to the vernal equinox direction, IZ is parallel to the rotation axis of earth, and IY is

defined by the right-hand rule.

The second frame used in the PMAC simulation is the body frame B{X Y Z} of the spacecraft.

The body frame is chosen to align with the principle inertia axes of the spacecraft. The body frame

has its origin at the satellite center of mass with BX parallel to the REPTile collimator, BZ parallel

to the satellite antenna, and BY defined by the right-hand rule; Figure 4.3 shows the spacecraft

body frame. The 3⇥ 3 matrix [R] is defined to rotate an arbitrary vector v from the inertial frame

to the body frame:

Bv = [R] Iv. (8.1)

This rotation matrix will change at each step of the simulation as rotational dynamics change the

attitude of the spacecraft relative to the inertial frame. More detail on the inertial to body frame

rotation matrix is given in Section 8.1.2.

The final frame is the Earth Centered Earth Fixed (ECEF) frame which rotates with Earth.

The ECEF frame E{X Y Z} has its origin at the center of earth with direction vectors defined as

follows: EX lies in earth’s equatorial plane and is parallel to the prime meridian (0�N, 0�E), EZ is



136

parallel to the rotation axis of earth (90�N), and EY is defined by the right hand rule (0�N, 90�E).

The conversion between the ECI and ECEF coordinate frames is not dependent on the satellite

attitude; it is defined by the following rotation matrix:

2666664
X

Y

Z

3777775
E

=

2666664
cos (�0 + !Et) sin (�0 + !Et) 0

� sin (�0 + !Et) cos (�0 + !Et) 0

0 0 1

3777775

2666664
X

Y

Z

3777775
I

(8.2)

where �0 is the Greenwich Mean Sidereal Time (GMST) when the simulation starts, !E is the

sidereal rotation rate of earth (rotation rate relative to fixed stars) and t is the time since simulation

start. Figure 8.1 shows both the ECI and ECEF coordinate frames. The ECEF frame is useful

because many inertial models are given in this frame.

8.1.2 Attitude Parameters

The rotation matrix is useful for converting vectors from one frame to another. Also, it is

simple to work with; the reverse rotation matrix (body to inertial) is found by simply transposing the

original rotation matrix: [R] = [R]BI = [R]TIB. However, the rotation matrix is a nine-dimensional

representation of a three-dimensional rotation; six elements are redundant [65]. These redundant

elements can lead to inaccurate modeling as rounding errors soften the constraints.

Three dimensional attitude parameters (such as Euler Angles) always contain a singularity

in their kinematic di↵erential equation at some specific attitude, making them undesirable for

numerical integration purposes. A good compromise is the quaternion, a four-dimensional attitude

parameterization with a single redundant parameter. The relation between the quaternion and the

rotation matrix is given by [65]:

[R]BI =

2666664
q20 + q21 + q22 + q23 2(q1q2 + q0q3) 2(q1q3 � q0q2)

2(q1q2 � q0q3) q20 � q21 + q22 � q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 � q0q1) q20 � q21 � q22 + q23

3777775 (8.3)
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Figure 8.1: The ECEF and ECI coordinate frames are shown.
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where q0 is the scalar part of the quaternion and [q1 q2 q3]T is the vector part. The quaternion has

a single constraint: q20 + q21 + q22 + q23 = 1. This constraint is easily satisfied by normalization at a

certain interval. The simulation developed in this chapter re-normalizes the quaternion every 100

integration steps; this frequency is chosen as a balance between computational performance and

error tolerance.

8.1.3 Equations of Motion

The core of the simulation is Euler’s rotational equation of motion (Equation 2.1). However,

this equation cannot be integrated alone; it must be combined with a kinematic di↵erential equation

which defines the relationship between the angular velocity and the rate of change of the attitude

parameters. As such, the kinematic di↵erential equation is dependent on the parameter set used

to represent the attitude. The kinematic di↵erential equation for quaternions is given as [65]:

2666666664

q̇0

q̇1

q̇2

q̇3

3777777775
=

2666666664

q0 �q1 �q2 �q3

q1 q0 �q3 q2

q2 q3 q0 �q1

q3 �q2 q1 q0

3777777775

2666666664

0

!1

!2

!3

3777777775
(8.4)

where the scalar-first quaternion convention is used.

8.1.4 Orbit Propagation

The PMAC simulation assumes that the satellite rotation and translation are not coupled;

thus the attitude has no e↵ect on the orbit of the spacecraft. This assumption results in inertial

satellite position and velocity vectors which are directly related to the orbit elements at some epoch

and time relative to this epoch. These inertial position and velocity vectors are used as inputs for

the inertial models described in Section 8.1.5.

The CSSWE orbit mean elements at a given epoch are provided by a Two-Line Element

(TLE) set. This TLE is provided by the Joint Space Operations Center (JSpOC) for use with
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the CSSWE mission. The orbit elements contained within the TLE make specific assumptions

about the orbit and are designed to be propagated using only select orbit propagation schemes [35].

The PMAC simulation uses an updated version of the SGP4 propagator [79] designed for TLE

propagation; the same method is used to calculate the CSSWE position for real-time on-orbit

operations.

The first usable TLE has an epoch over ten days after launch, as shown in Figure 4.8. The

datasets shown later in this chapter simulate the first ten days on orbit and thus use one TLE over

this time period. Although the TLE is most accurate close to the epoch, no other position estimate

is available for the early mission and on-orbit telemetry has shown the TLE-based position to be

accurate to at least ±6 seconds (Figure 4.8). Using one TLE throughout the simulation has the

advantage of avoiding discontinuities in satellite position and velocity which would be generated

during the switch from one TLE to the next.

8.1.5 Inertial Vector Models

The simulation uses two models to generate the inertial vectors for both magnetic field and

sun position. The magnetic field model is solely dependent on satellite position in the ECEF frame,

while the sun position model is solely dependent on date. Both are defined below.

8.1.5.1 International Geomagnetic Reference Field Model

The PMAC simulation uses the eleventh generation International Geomagnetic Reference

Field (IGRF-11) model [23] to generate the inertial magnetic field vector. The IGRF is based on

empirical measurements and is widely used as a magnetic field model for many applications. The

IGRF represents the magnetic flux density as the negative gradient of a scalar potential function

(B = �5 V ) which is defined by a spherical harmonics series which is set by a maximum of 195

coe�cients (order 13). These coe�cients are updated every five years; the latest epoch is 2010.

The model also predicts some coe�cients for the next five years after the latest epoch at one year

intervals; 80 coe�cients are predicted (order 8). The model sets coe�cients for times between the
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prediction year epochs using linear interpolation.

The IGRF is designed to provide an estimate of the magnetic field at the earth surface and

above due to magnetic materials below the surface; it does not take into account variation due to

space-based activity such as solar rotation, ionospheric currents, and geomagnetic storms. However,

it does account for internal variations in the magnetic flux density which take place over a timespan

of months to decades; this “secular variation” accounts for a global surface-level root mean squared

magnitude change of about 80nT per year [6]. The IGRF-11 model predictions (for years after

the 2010 epoch) of the core-based magnetic field are estimated to possess errors of up to 20nT per

year [23]. Using the IGRF to model the inertial magnetic field experienced by a satellite can lead

to higher errors, as discussed in Section 4.3.2.3.

Figure 8.2 shows the global magnetic flux density magnitude at altitudes of 450km and 770km

(the extremes of the CSSWE orbit) as generated using the IGRF model with the 2012 predictive

coe�cients. This figure shows the range of magnetic flux densities which are used in the attitude

simulation at various positions on-orbit. The CSSWE orbit experiences magnetic flux density

magnitudes ranging from 17.6µT to 52.3µT.

8.1.5.2 Inertial Sun Vector Model

The inertial sun position model is calculated using the method defined by Vallado [77]. A

simplified version of the method which calculates the ECI frame unit vector from the center of

earth to the sun I ŝ is shown below:
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Figure 8.2: Earth global magnetic flux density magnitude at altitudes of 450km (top) and 770km
(bottom) as calculated using the eleventh-generation International Geomagnetic Reference Field
(IGRF-11) model with the 2012 predictive coe�cients.
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TUT1 =
JDUT1 � 2, 451, 545.0

36, 525
(8.5)

�
Msun = 280.4606184 + 36, 000.77005361TUT1 (8.6)

Msun = 357.5277233 + 35, 999.05034TUT1 (8.7)

�ecliptic = �
Msun + 1.914666471 sin (Msun) + 0.918994643 sin (2Msun) (8.8)

" = 23.439291� 0.0130042TUT1 (8.9)

I ŝ =

2666664
cos�ecliptic

cos " sin�ecliptic

sin " sin�ecliptic

3777775 (8.10)

where JDUTI is the Julian Date, TUT1 is the number of centuries since the epoch, �
Msun is the mean

longitude of the Sun, Msun is the mean anomaly of the Sun, �ecliptic is the ecliptic longitude of the

Sun, and " is the obliquity of the ecliptic. All angles (�
Msun , Msun, �ecliptic, and ") are in units of

degrees. This method is valid from 1950 to 2050 and is accurate to 0.01� [77]. It is not necessary

to convert the unit vector from earth to the sun I ŝ to the unit vector from the satellite to the sun;

for a satellite at 1000km altitude, the angular di↵erence between the center of the earth and the

satellite position when perpendicular to the earth-sun vector (maximum error) is 0.0024� which is

less than the 0.01� accuracy of the model.

It is useful to denote times at which the satellite is in eclipse. The simulation uses the method

described by Kelso [41], outlined below. First, define the angular radii of the earth and sun as seen

by the satellite:

✓E =sin�1

✓
RE

⇢E

◆
(8.11)

✓S =sin�1

✓
RS

⇢S

◆
where RE and RS are the true radii of the earth and sun, respectively and ⇢E and ⇢S are the

distances from the satellite to the earth and sun, respectively. Next, the angle from the center of
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the earth and the center of the sun (as seen by the satellite) is calculated as:

✓ES = cos�1
�B

⇢̂E · B⇢̂S

�
(8.12)

where B
⇢̂E is the body-frame unit vector from the satellite to earth and B

⇢̂S is the body-frame unit

vector from the satellite to the sun. The earth-sun angle is used to determine when the sun is fully

or partially eclipsed by the earth as shown below. Note that these equalities are only true when

the earth appears larger than the sun (true for all satellite orbits within the moon’s orbit):

full eclipse (umbral): ✓ES < ✓E � ✓S (8.13)

partial eclipse (penumbral): |✓E � ✓S| < ✓ES < ✓E + ✓S.

8.1.6 External Torque Estimation

A PMAC system relies upon two external torques for control: bar magnet and hysteresis

torque. Other external torques are present due to the interaction of the spacecraft and the local

environment: gravity gradient, aerodynamic (drag), solar pressure, magnetic residual, and eddy

current. Each of these torques is described and modeled in the body frame for inclusion in Equa-

tion 2.1. The total external torque is simply:

L = LB + LH + LG + LD + LSP + LR + LEC (8.14)

8.1.6.1 Bar Magnet Torque

The bar magnet torque vector is given by Equation 2.6, repeated below.

LB = mbar ⇥B (2.6)

Note that there may be a large di↵erence in the manufacturer-quoted value of bar magnet

magnetic moment versus the true magnetic moment of the bar magnet mbar (see Section 7.2). The
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local magnetic flux density B is given by the IGRF model (see Section 8.1.5.1).

8.1.6.2 Hysteresis Torque

The hysteresis torque is the most di�cult torque to model in the PMAC simulation due

to the non-linear relationship between the local magnetizing field due to earth and the induced

magnetization within the rod. Many models exist to attempt to predict this relationship; three

such models are investigated in this research. As with the bar magnet torque, the IGRF model

is used to calculate the local magnetic flux density vector B. The component of the magnetizing

field H = B/µ0 parallel to each hysteresis rod at the current time step is used as the applied field

input to the hysteresis model. The component of the vector derivative of the magnetizing field as

seen in the body frame
Bd
dt H is used as an input for each of the investigated hysteresis models. The

component is calculated as
Bd
dt H=

⇣
Bd
dt H

⌘
·n̂rod where n̂rod is a unit vector describing the orientation

of the hysteresis rod.

Each model seeks to represent the average induced magnetic flux density parallel to the

rod. Equation 2.7 converts the average parallel magnetizing field within the rod into the magnetic

moment parallel to the hysteresis rod mhyst at the current time step. The vector magnetic moment

is calculated using mhyst = mhystn̂rod. The torque provided by the hysteresis rods is then given by

the magnetic torque equation:

LH = mhyst ⇥B (8.15)

8.1.6.3 Parallelogram Model

The parallelogram hysteresis model is the simplest and easiest model to implement [47] [61].

It is defined by a parallelogram that: intersects the y-axis at ±B
r

, intersects the x-axis at ±H
c

,

and has a maximum absolute B-field output of B
s

. The top curve is used when the magnetizing

field derivative
Bd
dt H < 0, while the bottom curve is used when

Bd
dt H � 0. Thus, the output B is

dependent only on H,
Bd
dt H, H

c

, B
r

, and B
s

and does not depend on cycle magnitude or frequency
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or the previous magnetic flux density within the rod. The parallelogram model output is shown in

blue in Figure 8.3.

8.1.6.4 Inverse Tangent Model

The inverse tangent hysteresis model [26] approximates the bounds of a typical hysteresis

curve using the inverse tangent function. The model is defined as:

k =
1

H
c

tan

✓
⇡B

r

2B
s

◆
if

Bd

dt
H � 0 :

B =

✓
2B

s

⇡

◆
tan�1 (k(H �H

c

)) (8.16)

if
Bd

dt
H < 0 :

B =

✓
2B

s

⇡

◆
tan�1 (k(H +H

c

)) .

Again, the output B is dependent only on H,
Bd
dt H, H

c

, B
r

, and B
s

and does not depend on

the magnetization cycle magnitude or frequency or the previous magnetic flux density within the

rod. The inverse tangent model output is shown in green in Figure 8.3.

8.1.6.5 Flatley Model

The Flatley hysteresis model [26] is substantially di↵erent than the previous models, as it

is defined in terms of a di↵erential equation. While this adds complexity, the resultant loop is

much more realistic as it can model minor hysteresis loops within the full loop as the hysteresis

experiences lower cycle amplitudes. The Flatley model is defined as:
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k =
1

H
c
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◆
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dt
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✓
q0 + (1� q0)
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1
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c

✓
H � 1
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H

◆
(8.17)

if
Bd

dt
H < 0 :

Ḃ =

✓
q0 + (1� q0)


1

2H
c

✓
H � 1

k
tan

✓
⇡B

2B
s

◆
�H

c

◆�
p

◆ ✓
2kB

s

⇡

◆
cos2

✓
⇡B

2B
s

◆✓Bd

dt
H

◆
where q0 and p are selectable constants which are tailored to fit a given empirical dataset. The model

is found to perform best (most realistic over the wide range of magnetizing field cycle amplitudes)

when q0 = 0 and p = 2; these values have been used by other groups as well [58] [12]. The magnetic

flux density time derivative Ḃ is thus dependent on B, H, B d
dtH, H

c

, B
r

, and B
s

. In practice, the

Flatley model allows for the hysteresis rod magnetic flux densities to be integrated simultaneously

with the attitude parameters and the angular velocity of the satellite. This means that the flux

density is also dependent on the choice of numeric integrator, the simulation time step, and the

hysteresis rod flux density of the previous integration step. Figure 8.3 shows a comparison of the

output of the parallelogram, inverse tangent, and Flatley hysteresis models for two H-field cycles

with amplitudes of ±8 A/m and ±3 A/m. The parallelogram and inverse tangent models are

simply cuto↵ at lower cycle amplitudes, whereas the Flatley model actively adjusts to account for

the changes in magnetizing field cycle amplitude.

The Flatley hysteresis model is chosen for this research because it was developed for numeric

simulation of empirical datasets [26]. Also, the Flatley model has been used for a variety of past

hysteresis dampening simulation [58], [43]. However, attempts to fit hysteresis measurement data

using this model have shown its deficiencies (see Section 7.3).

The Flatley hysteresis model is numerically integrated and is not defined by two constant

curves as the parallelogram and inverse tangent models are; as a result of this, some unique errors
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Figure 8.3: Hysteresis loop output by three di↵erent hysteresis models with magnetizing field cycle
amplitudes of ±8 A/m (top) and ±3 A/m (bottom). The parallelogram model (blue), inverse
tangent (green), and Flatley (red) hysteresis models are shown. These loops were generated using
closed magnetic circuit hysteresis parameters (see Table 7.2), two 1 Hz H-cycles, and a time step
of 0.001s.
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can occur. The Flatley model is designed to be bounded by the inverse tangent hysteresis model.

Repeated simulation has shown that the Flatley-model-simulated hysteresis rod magnetic flux den-

sities can sometimes exceed the bounds of the inverse tangent model for a time. In some extreme

cases, the simulated rod magnetic flux density greatly exceeds the bounds of the inverse tangent

model, corrupting the results of the PMAC simulation. This problem is resolved by checking the

hysteresis rod magnetic flux density value after each simulation step. If the output exceeds the

inverse tangent model bounds, the output is set to the top or bottom curve of the inverse tangent

model, whichever is closer. This check prevents the erroneous behavior mentioned above.

8.1.6.6 Gravity Gradient Torque

The gravity gradient torque is given as follows [65]:

BLG =

✓
3µ

e

R5
c

◆
B
R

c

⇥ [I]BR
c

(8.18)

where µ
e

is the earth gravitational parameter (3.986 · 105 km3s�2), B
R

c

is the body-frame position

vector from the center of earth to the center of mass of the spacecraft, and [I] is, again, the

spacecraft mass moment of inertia matrix. As shown, the gravity gradient torque is highest at low

altitudes and is increased as the inertia matrix of the satellite becomes less symmetric. The torque

acts to align the minimum inertia axis of a satellite with the nadir direction.

8.1.6.7 Aerodynamic Torque

The aerodynamic torque is calculated as follows [61]:

BLD =
1

2
⇢C

d

(BS · BV )(BV ⇥ B
r

d

) (8.19)

where ⇢ is the density of the medium in which the spacecraft is traveling, C
d

is the spacecraft

coe�cient of drag (assumed to be 2.4 for CSSWE), B
S is a vector defining the surface area of each

of the body axes of the spacecraft ([0.03 0.03 0.01]T m2 for a 3U CubeSat), B
V is the spacecraft
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velocity vector in the body frame, and B
r

d

is the body-frame position vector from the satellite

center of mass to the geometric center (can be calculated using a solid model). The density ⇢ is the

most di�cult to calculate, as it can vary greatly depending on solar input and spacecraft altitude.

The NRLMSISE-00 empirical model [59] is used by the simulation to estimate the atmospheric

density for the position of the satellite at each time step. Daily and 81-day average F10.7 indices,

as well as the average 3-hour ap index for the last 48 hours are all inputs to the NRLMSISE-00

model. The following assumed inputs are used: A daily F10.7 flux of 128.7·10�22J·s�1m�2Hz�1,

an 81-day average F10.7 flux of 168.5 ·10�22J·s�1m�2Hz�1, and an average 3-hour ap index of 48.

These inputs are defined in this way to simulate moderate solar activity.

8.1.6.8 Solar Pressure Torque

When the satellite is insolated (see Section 8.1.5.2), the force vector due to radiative pressure

may be defined in the body frame as [78]:

BFSP = �P
S

c
R

diag(BS)Bŝ (8.20)

where P
S

is the solar radiation pressure at earth (set to 4.5 · 10�6 Pa [36]), c
R

is the coe�cient of

reflectivity of the satellite (assumed as 0.8), and Bŝ is the body-frame unit vector from the earth

to the sun. The torque vector due to solar pressure is thus:

BLSP = B
r

d

⇥ BFSP. (8.21)

8.1.6.9 Magnetic Residual Torque

The magnetic residual torque is due to undesired magnetism that may be present in the satel-

lite. These magnetic residuals may be due to current loops, hard magnetic material in the satellite,

or a misalignment of the PMAC bar magnet. The PMAC simulation models the residual magnetism

as a constant magnetic moment vector in the body frame mres (set to [-0.0059 -0.0083 0.0004]T

A·m2), and the torque vector due to magnetic residual is calculated as:
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BLR = mres ⇥ BB (8.22)

The chosen magnetic residual of CSSWE is based on a fit which minimizes the MEKF resid-

uals (see Section 6.2.2); the residual is simply the di↵erence between the fit and the assumed

magnetic moment of the bar magnet mbar. However, future missions could determine the magnetic

residual before flight using a method similar to the bar magnet measurement (see Section 7.2) if

the satellite is measured in its flight configuration.

8.1.6.10 Eddy Current Torque

Eddy currents are generated when a conductor experiences a changing magnetic field. These

circular currents induce their own magnetic field which can torque the satellite. The magnetic fields

generated by eddy currents within rotating satellites are usually negligible compared to the local

magnetic field; the simulation makes this assumption. Eddy currents can be generated in magnetic

or non-magnetic conducting material but torques generated by currents within magnetic material

are usually dwarfed by magnetization-based torques. The eddy current torque is partially based on

area available for loops to form. Thus, it is assumed that the eddy currents generated by CSSWE

are formed within the solid aluminum shell of the 3U CubeSat. The eddy current torque is given

by [64]:

LEC =
nX

i=1

(k
i

· B̂)(! ⇥B)⇥B (8.23)

where there are n surface elements which generate eddy currents and k
i

is a vector constant set by

a given surface element [30]:

k
i

=
⇡

4
�
i

r3
i

A
i

n̂
i

(8.24)

where �
i

is the conductivity of the surface element, r
i

is the maximum circular loop radius that

can form within the surface element, A
i

is the area of the surface element, and n̂
i

is the unit vector
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normal to the surface element. Note that currents will be generated in the same direction and add

together instead of nullify (consider opposite sides of the same CubeSat); the sign of n̂
i

should

reflect this behavior. The aluminum 3U solid shell of CSSWE was calculated to have k1 = [147.3

0 0]T , k2 = [0 147.3 0]T , and k3 = [0 0 49.3]T , all in units of A2·s3·m2·kg�1.

8.1.7 Numeric Integrators

The choice of numeric integrator can have a great e↵ect on the results of the simulation. In

fact, much analysis is performed to select a numeric integrator and time step for the simulation (see

Section 8.3). This subsection defines the numeric integrators which are considered for simulation

use.

The most basic explicit numeric integrator is Euler’s method; it uses the value and derivative

at the current step to determine the value at the next step using a time step duration h:

y
n+1 = y

n

+ h f(t
n

, y
n

) (8.25)

t
n+1 = t

n

+ h

where f(t, y) is the rate of change of y at (t, y). Decreasing the time step will yield better results,

but Euler’s method is often not the best choice for numerical integration. It is only accurate to first

order. Also, it is possible that a higher-order integrator could yield more accurate results at a lower

time step, thus saving computing resources. There are many higher-order explicit integrators; this

research focuses on explicit Runge-Kutta integrators of order two through seven and the Lie Group

Variational Integrator.

8.1.7.1 Runge-Kutta Integrators

Explicit Runge-Kutta methods of order greater than one calculate the next value using the

current value, the current derivative, and the derivative at one or more points between each inte-

gration step. Explicit Runge-Kutta integration may be generalized as follows [34]:
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y
n+1 = y

n

+ h
sX

i=1

b
i

k
i

(8.26)

where

k1 = f(t
n

, y
n

)

k2 = f(t
n

+ c2h, yn + a21k1)

k3 = f(t
n

+ c3h, yn + a31k1 + a32k2)

...

k
s

= f(t
n

+ c
s

h, y
n

+ a
s1k1 + a

s2k2 + . . .+ a
s,s�1ks)
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ij
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are given by the Butcher tableau of the integrator in use.

Appendix B explains the Butcher tableau and defines coe�cients for integrators from order two to

order seven.

This research investigates the performance of fixed time step integrators only; this limitation

allows for improved data processing. Data from each simulation is saved at a rate of 1 Hz regardless

of the integration time step; this reduces the size of save files and allows for direct comparison

between datasets generated over a range of time steps. Adaptive step size Runge-Kutta methods

do not possess these advantages.

8.1.7.2 Lie Group Variational Integrator

Researchers at the University of Michigan [44] have recently developed the Lie Group Vari-

ational Integrator (LGVI); it is designed to model long-term, low disturbance torques. LGVI is

based on a discrete variational approach, and thus preserves the momentum of the system between

time steps [45]. The Lie group integrator, created by Iserless et al. [37], is the basis of the LGVI.

The Lie group numeric integrator uses the following integration rule:
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◆
[R]

n

. (8.27)
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where n is the current integration step, n + 1 is the next integration step, and h is the constant

integration time step duration. Equation 8.27 gives the updated rotation matrix but it requires

the new angular velocity !

n+1 as an input. The new angular velocity could be calculated using a

Runge-Kutta method to integrate Equation 2.1, but that could corrupt the momentum conservation

which Equation 8.27 was developed to avoid. Lee et al. obtained the discrete Lie group variational

numeric integrator rules by discretizing Hamilton’s principle [45]:
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where ⇧ = [I]! is the angular momentum vector, [I
d

] is a non-standard inertia matrix defined by

[I] = tr([I
d

])[I3⇥3]� [I
d

], and [F ]
n

is the 3⇥3 rotation matrix defining the relative attitude between

t
n

and t
n+1. Thus, given the angular velocity and external torque vectors for the present time

(!
n

, L
n

), [F ]
n

may be used to determine the state at the next step. However, in practice solving

Equation 8.29 is not a trivial task because [F ]
n

is a 3⇥ 3 matrix.

In order to solve for [F ]
n

, Lee introduces the 3⇥ 1 vector f
n

, defined by [45]:
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When Equation 8.31 is substituted into Equation 8.29 and the definition of a skew-symmetric

matrix is used, it becomes:
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where Equation 8.32 is solved using Newton’s method. Thus, given initial inputs, the PMAC

simulation is time-marched continually using the following process [45]:

(1) Determine f

n

using Newton’s method to solve Equation 8.32 given !

n

and L
n
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(2) Determine [F ]
n

using Equation 8.31 given f

n

(3) Determine [R]
n+1 using Equation 8.30 given [R]

n

and [F ]
n

(4) Determine L
n+1 using the models developed in Section 8.1.6 given [R]

n+1

(5) Determine !

n+1 using Equation 8.28 given !

n

, L
n

, L
n+1, and [F ]

n

.

However, there are several drawbacks to using LGVI to integrate a PMAC simulation. It

is di�cult to include the hysteresis magnetizations as additional integration states. The LGVI

estimates the attitude and angular velocity states after each integration step; the hysteresis mag-

netization integration is thus limited to Euler’s method. It is possible to use a Runge-Kutta

integrator between each LGVI integration step to obtain a higher-order estimate of the hysteresis

magnetizations based on intermediate attitude estimates, but this has been found to greatly im-

pact the processing time of the simulation. Instead, the simulation uses Euler’s method to integrate

the hysteresis magnetization when using LGVI for attitude integration, as has been done in the

past [58] [44].

LGVI was developed to integrate rigid body dynamics when the external torque is dependent

on attitude alone; it is not designed for torques which are dependent on angular velocity. The

hysteresis torque is dependent on the body-frame time derivative of the magnetizing field (see

Section 8.1.6.2); this is calculated using the transport theorem below [65]:

Bd

dt
(H) =

Id

dt
(H)� ! ⇥H (8.33)

= [R]IḢ� ! ⇥ [R]IH

Thus, the hysteresis torque is dependent on the current rotation matrix and the current angular

velocity. Previous work using the LGVI [44] assumes !

n

⇡ !

n+1 when calculating the hysteresis

magnetization derivative; this work uses this approach for simulations using the LGVI with hys-

teresis torque. The explicit Runge-Kutta integration methods described in Section 8.1.7.1 do not

possess the drawbacks listed above.
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8.2 Considerations

It is helpful to briefly consider concepts of attitude dynamics which apply to a PMAC satellite.

A basic grasp of these concepts will shed light on the simulation results presented later in this

chapter.

8.2.1 Torque-Free Rigid Body Motion

A rigid body without any external torques acting upon it will behave according to gyroscopic

motion alone (Equation 2.1 with L = 0). With this special condition, the angular momentum vector

⇧ = [I]! is constant in the inertial frame and the magnitude of angular momentum is constant

in any frame. Also, the total system energy (due to kinetic energy alone) is conserved. Taken

together, this means the satellite motion is bounded by the intersection of the energy ellipsoid

T =
1

2
I1!

2
1 +

1

2
I2!

2
2 +

1

2
I3!

2
3. (8.34)

and the momentum ellipsoid

⇧2 = ⇧T⇧ = I21!
2
1 + I22!

2
2 + I23!

2
3. (8.35)

The above equations may be manipulated such that the angular momentum of each axis

⇧
i

are the independent coordinates; this results in a momentum sphere intersected by an energy

ellipsoid. Figure 8.4 (modified from Fig. 4.6 of [65], used with permission) shows the momentum

sphere and the energy ellipse assuming I1 > I2 > I3 (the CSSWE inertia matrix follows this trend

as well). When the system energy is at maximum, only rotation about the minimum inertia axis

is possible (! = ±!3n̂3). However, if the system loses energy over time (due to structural flexing,

hysteresis, etc.), the energy ellipsoid will shrink until the system energy is equivalent to motion

about the intermediate axis. However, the motion is not necessarily about the intermediate axis

because of the sepratrix, the boundary between the high energy domain (wobble about ±n̂3) and the

low energy domain (wobble about ±n̂1). The motion of a rigid body at the sepratrix is inherently
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chaotic as the energy ellipsoid intersects the momentum sphere in many places. As more energy is

removed, the satellite will settle to a wobble about n̂1 or �n̂1; either is equally likely after motion

along the sepratrix. Continued damping will cause the motion to be solely about the major inertia

axis (! = ±!1n̂1) [65].

Torque-free motion has important implications for a PMAC satellite. This is motion which

every satellite experiences to some extent as it is present in the gyroscopic term of Equation 2.1.

The extent to which a given satellite will “feel” the gyroscopic motion (and thus behave in this

manner) may be examined by calculating the “gyroscopic torque” as follows:

LGY = �[!⇥][I]!. (8.36)

This “torque” (which a rigid body experiences even in the absence of external torque) is taken

directly from Euler’s rotational equation of motion. If the gyroscopic torque LGY is much greater

than the external torque L then the rigid body will experience mainly torque-free motion. If the

gyroscopic torque is much less than the external torque, torque free motion is not dominant. If

the gyroscopic torques is similar in magnitude to the external torque, some combination of torqued

and torque-free motion will result.

8.2.2 3D Pendulum Comparison

A satellite with a bar magnet in a constant magnetic field is dynamically equivalent to a

rigid pendulum tethered at a distance to a fixed, frictionless point and acted upon by a constant

gravitational acceleration. This special case is known as a 3D pendulum whose equations of motion

are as follows [67]:

[I]!̇ = �[!⇥][I]! + ⇢⇥mg (8.37)

where ⇢ is the distance vector from the pendulum center of mass to the pivot, m is the mass of the

pendulum, and g is the gravitational acceleration vector. Thus, the 3D pendulum ⇢ and mg are
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Figure 8.4: Interactions of the momentum sphere and energy ellipse at (a) minimum energy, (b)
intermediate energy, and (c) maximum energy conditions (modified from Fig. 4.6 of [65], used with
permission).
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analogous to the PMAC mbar and B, respectively.

Because the equations of motion are numerically identical, conclusions drawn from previous

studies of the 3D pendulum apply to the bar-magnet-only case of PMAC as well. What follows is

a list of properties of the 3D pendulum which also apply to a PMAC satellite in certain conditions.

(1) The 3D pendulum cannot be analytically solved [14]. If this is true of the PMAC bar-

magnet-only case, it is also true of all other PMAC cases.

(2) The 3D pendulum conserves the total energy of the system as well as the component of

angular momentum about the axis parallel to mg (PMAC B).

(3) The system dynamics are unchanged by rotation about the axis parallel to ⇢ [67] (PMAC

mbar).

(4) The hanging equilibrium (with ⇢ parallel to mg and with the pendulum center of mass

below the pivot) is Lyapunov stable [67]; initial states which are close to this point will

remain close to this point. This is equivalent to a bar magnet which is aligned with the

local magnetic field.

(5) The inverted equilibrium (with ⇢ parallel to mg and with the pendulum center of mass

above the pivot) is unstable [67]. This means that a small deviation from the equilibrium

point could cause large changes in the state of the system. This is equivalent to a bar

magnet anti-parallel to the local magnetic field.

(6) Control in the form of L = u⇥mg (where u is the control input) preserves the conservation

of angular momentum along the axis parallel to mg [67]. This is analogous to PMAC

hysteresis torque (Equation 8.15).

The instability described in point (5) means that the PMAC dynamics are sensitive when

� = 180�; this should not be confused with chaotic motion due to the sepratrix. Point (6) is

important as it implies that di↵erent dynamics are in e↵ect when non-magnetic environmental

torques are included in a simulation.
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8.3 Simplified Simulation Analysis

This section seeks to answer two major questions:

(1) Can a simulation be used to represent PMAC dynamics? If so, to what extent?

(2) If a simulation can be used to represent PMAC dynamics, what integrator and time step

should be used to ensure accurate output?

A simplified simulation is developed to answer these questions at a reasonable computational

cost. Because this simplified simulation maintains the key properties of the full simulation, it

is assumed that the lessons learned can be applied to the full simulation. The assumptions and

conditions of the simplified simulation are discussed before using the simulation for a variety of

analysis. This study considers the LGVI and RK2-RK7 integrators as well as time step values of

1s, 0.1s, and 0.01s.

8.3.1 Description

A simplified simulation is developed in an attempt to understand the base properties of the

full simulation. This simplified simulation can run much faster than the full simulation yet retains

its key properties. The first simplification is an inertially-constant magnetizing field vector; this

simulates a circular equatorial orbit if the earth has a perfect dipole magnetic field aligned with its

poles with no o↵set. Second, when external torques are included in the model, only the gravitational

gradient and solar pressure torques are included. The gravitational gradient assumes a constant

inertial position of 450 km altitude above the surface of earth along +IY . The solar pressure torque

assumes a constant inertial unit vector from the earth to the sun I ŝ =[-1 0 0]T . Together, these

are the gravity gradient and solar pressure torques for a prograde orbit dawn crossing at autumnal

equinox; these constant inertial values are chosen for simple application and visualization. With

these assumptions, only the ECI and body frames are required.

Two sets of initial inputs are run; each set is run through a variety of analysis. Both sets

use a satellite magnetic moment m = [0 0 0.55]T A·m2 and the principal moment of inertia matrix



160

Table 8.1: Nominal inputs for the simplified simulation sets are shown below. The derived values
of � angle and initial system energy are also shown.

Parameter Unit Set 1 Set 2
Constant magnetizing field vector IH A/m [0 0 20]T [25.18 2.76 -8.59]T

Initial 1-2-3 Euler angles EA123 deg [90 0 0]T [13.9 -71.6 104.1]T

Initial angular velocity vector !0 deg/s [1 1 1]T [0.17 -0.97 2.93]T

(Derived Values)

Initial � angle deg 90 178.1
Initial system energy J 7.46·10�6 2.82·10�5

given in Section 4.2. Other parameters which define the hysteresis, gravity gradient, and solar

pressure torques are given in Table 8.2.

The input values for both initial condition sets are defined in Table 8.1. The first set uses a

20 A/m constant magnetizing field and starts with the satellite perpendicular to the magnetic field

and rotating at one degree per second in pitch, yaw, and roll. Initial input set two is defined by the

CSSWE attitude and angular velocity as calculated by MEKF for September 14, 2012 at 00:59:48

UTC; this is eight minutes after PPOD deployment and shortly after the MEKF converges to an

attitude solution (see Chapter 6).

8.3.2 Energy Conservation Analysis

The numeric integrator itself can cause the simulated system energy to drift over time. Al-

though this behavior is undesired, every combination of numeric integrator and time step will have

some energy drift; the key is to determine an acceptable level of this drift. Here the maximum

allowable energy drift is set as the energy dissipated by a single ±20 A/m cycle of one flight hys-

teresis rod over a 1000 hour simulation time; this duration (about 42 days) is considered the longest

timespan over which the simulation will be used to calculate a settling time. Using the fitted hys-

teresis loop area shown in Table 7.2 and the volume of a single flight hysteresis rod, this amounts

to a maximum allowable energy change of 3.3·10�9J over a 1000 hour simulation. It is assumed

that energy di↵erences below this threshold will have a negligible e↵ect on the dynamics because
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the rod-based energy loss will dominate the integrator-based energy drift.

The energy conservation of each integrator and time step is analyzed by running the simplified

simulation for 1000 hours with a bar magnet only; no hysteresis, gravity gradient, or solar pressure

torques are included. Ideally, a freely-floating bar magnet in a constant magnetic field will perfectly

conserve the initial system energy as there are no dampening torques included in the simulation.

Figure 8.5 shows the maximum energy drift of each integrator and time step combination over 1000

hours of simulation using input sets 1 and 2; an energy drift of zero is ideal. Input set 2 results

in energy drifts as high as 100 times the level of input set 1. This may be due to motion near the

instability point at � = 180�, which is not seen by the dynamics when using input set 1. Also, set

2 has a higher initial energy than set 1. Due to computational cost, this analysis is not repeated

for all possible initial inputs; instead set 2 is assumed to be the worst-case initial input. Thus, the

integrator and time step combinations with output beyond the energy drift threshold are ruled out

for use in the full simulation.

Although the LGVI is the quickest-running integrator for a given time step duration, its

performance is often comparable to the RK4 at the same time step. Note that the higher-order

integrators, when compared to the LGVI at a decreased time step, regularly show decreased energy

drift at similar (or lower) computation times. This analysis is not in favor of using the LGVI for the

attitude simulation as it is more complicated and more di�cult to understand than Runge-Kutta

methods while achieving similar performance.

8.3.3 Angular Error Analysis

The energy drift is not the only performance metric which can evaluate each integrator and

time step combination; the beta angle error and the settling time error may also be used. However,

the ideal beta angle and settling time are much more di�cult to calculate than the bar-magnet-only

system energy, which will ideally remain equal to the initial system energy. This problem is further

complicated by the impossibility of an analytical solution for PMAC dynamics.

Here the approach is to compare each integrator and time step to the the highest-order,
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Figure 8.5: The maximum energy change for each integrator and time step combination. The
negligible energy change threshold of 3.3·10�9J is denoted by the red dotted line. The normalized
computation time of each simulation is also shown in green. The 0.01s time step is not shown due
to the unreasonable computation times required to simulate 1000 hours.
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lowest-time-step output, which is assumed to be “truth”. Figure 8.6 defines error relative to the

RK7/0.01s output and shows the maximum beta angle error for simulations over a 30 hour duration

using initial input sets 1 and 2. Three cases are run for each of the input sets: the bar-magnet-only

case, the bar-magnet-and-hysteresis-only case, and the all-torque case. The output based on set 1

is expected; the error follows a downward trend to the right as the integrator order increases and

the time step duration decreases. The inclusion of environmental torques results in slightly better

performance in most cases. Note that the LGVI output usually exhibits the worst performance at

each simulation time step. The LGVI performance is especially poor for the cases which include

hysteresis torque; this is likely because the LGVI integrates the hysteresis magnetization using

Euler’s method.

The output based on input set 2 is quite di↵erent; although the bar-magnet-only case performs

better, the cases including dampening torques are much worse as they show little, if any, decrease in

beta angle as the integrator order increases and the time step duration decreases. This behavior is

believed to be due to the chaotic nature of the sepratrix crossing which occurs for case 2 but not for

case 1. Figure 8.7 shows the simulation time at which a 1-2-3 Euler Angle error magnitude of one

degree is breached using input set 2. At a given time step, each integrator diverges from the “true”

attitude at about the same time. This implies that the simulation has entered a chaotic region

which causes this divergence. The chaotic behavior does not occur for the bar-magnet-only case

(Figure 8.6). This implies that the chaotic region is at some intermediate state such as dampening

through the sepratrix.

8.3.4 Settling Time Analysis

The presence of a chaotic region does not rule out the possibility of accurate simulation.

However, it does mean that the absolute attitude error is perhaps not the best metric for simulation

performance. It is possible for the simulated beta angle to accumulate a large phase error without

causing a significant change in the settling time. The settling time is chosen as the most important

feature of the attitude simulation due to its importance in predicting on-orbit mission duration.
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Figure 8.6: The maximum beta angle error for each combination of integrator and time step using
input set 1 (top) and input set 2 (bottom) over a 30 hour simulation duration. Each plot shows
the performance of the bar-magnet-only case (blue), the bar-magnet-and-hysteresis case (red), and
the all-torques case (purple). The beta angle error is defined by comparing the output with the
RK7/0.01s output of each case.
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Figure 8.7: The time at which the magnitude of the 1-2-3 Euler angle error exceeds one degree is
shown for each integrator and time step combination. These data are generated using initial input
set 2.
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The presence of a chaotic region calls for a di↵erent analysis procedure. Initial input set 2 is

used as the base input to the simplified simulation. The base input 1-2-3 Euler Angles and angular

velocity vector are perturbed by random Gaussian noise. The standard deviation of this noise is set

by the 1� uncertainty of the MEKF fit which defines initial input set 2. The standard deviations

are �

EA123 = [0.3625 0.6261 0.9539]T in units of degrees and �!0 = [1.4950 2.4140 1.0829]T · 10�2

in units of degrees per second. An array of random Gaussian noise values is generated once and

loaded before each simulation to ensure that a given run receives identical initial input over the full

range of integrator and time step combinations. The simulation is run thirty times and the settling

time for each run, integrator, and time step is calculated. Here the settling time is defined as the

time after which the beta angle remains within 5� of its final value.

Figure 8.8 shows the settling time distribution, mean, and standard deviation when each run

is normalized by its associated RK7/0.01s settling time. The normalized settling times converge as

the integrator order increases and the time step duration decreases. This gives confidence that the

simplified simulation is converging toward the true settling time for each initial input.

Figure 8.8 is also helpful when deciding upon an integrator and time step for the full simu-

lation. Without non-magnetic torques, RK7 at 1s represents the true system behavior quite well.

However, when non-magnetic environmental torques are included in the simulation, RK4 and above

at 0.1s or below is necessary to achieve realistic results.

The true settling time is quite sensitive to the initial conditions. Figures 8.9 and 8.10 show

initial system energy versus the settling times calculated using RK7/0.01s given normally-perturbed

inputs from initial input set 2 for both the bar-magnet-and-hysteresis case and the all-torques case.

As shown, the settling time can be quite sensitive to small changes in the initial inputs; the settling

times appear to be mostly well-grouped with a few outliers. In order to investigate this behavior

further, the sample median for each case is calculated, and bounds are defined for settling times

within ±3% of the median; the ±3% threshold is chosen because it is the tightest bound which

collects all of the grouped settling times for the bar-magnet-and-hysteresis case. The sample median

is used because it is less sensitive to outliers than the sample mean. Pearson’s product-moment
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Figure 8.8: The simplified simulation normalized settling time, mean, and standard deviation for
the bar-magnet-and-hysteresis case (top plots, red) and the all-torques case (bottom plots, purple)
using initial input set 2. The settling time for each randomly-perturbed dataset is normalized by
the RK7/0.01s settling time of that dataset. The individual settling times for each run are shown
on plots 1 and 3 while the mean and standard deviation of the runs for each integrator and time
step are shown on plots 2 and 4.
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correlation coe�cient is calculated for the total and selective samples of each case; the p-value of

each correlation coe�cient is also determined using a t-distribution with n� 2 degrees of freedom,

where n is the number of samples in the dataset [80]. The p-value is the probability that the sample

correlation could occur by random chance if there is truly no correlation; p-values lower than 0.05

typically represent a statistically significant correlation.

One would expect the initial energy of the system to be strongly correlated with the system

settling time. However, the data shows that a significant correlation is only found using settling

times within ±3% of the median. All of the calculated settling times appear to represent the true

dynamics because the other integrators and time step values converge to the same result, even for

the outlying runs (see Figure 8.8). There appears to be some true nonlinear behavior a↵ecting the

settling times. However, for all of the RK7/0.01s runs, the settling time does not exceed 110%

of the sample median. Rather, the settling time is unexpectedly smaller than it should be. By

discretizing the settling times into those above and below 110% of the 30-sample median, a binomial

distribution fit finds that the probability of the population of all perturbed simplified simulation

runs remaining below 110% has an upper bound of 1 and a lower bound of 0.8843 (with 95%

confidence).

This implies that although the PMAC dynamics are very sensitive to initial conditions, the

settling time is bounded on the high side. Thus, the nonlinear behavior of the PMAC dynamics is

unlikely to cause the settling time to greatly increase. However, the PMAC dynamics may cause the

settling time to be significantly smaller than expected. This is good news as it means a simulation

can be used to determine the true worst-case settling time of a PMAC satellite.

However, if a simulation is to be used to determine the worst-case settling time, the abnor-

mally low settling times should be avoided. If the simulation is run once and it happens to align

with an abnormally-low settling time, a mission designer may incorrectly assume that the expected

settling time is lower than it truly is; this incorrect interpretation could impact mission operations.

Fortunately, the simplified simulation runs with abnormally low settling times possess a distinct

dynamic response. Figures 8.11 and 8.12 show the angular velocity components versus time for
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Figure 8.9: The RK7/0.01s settling times versus the initial energy for the simplified simulation
perturbation runs of the bar-magnet-and-hysteresis case using the set 2 initial inputs. The left
plot shows the settling times for all thirty cases run and uses the dotted black lines to bound
values within 3% of the sample median shown by a solid red line; values outside these bounds are
represented by empty circles while values within the bounds are represented by filled red circles.
The right plot shows only those settling times within 3% of the entire dataset median. Pearson’s
product-moment correlation coe�cient and the associated p-value are shown for the data within
each plot.
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Figure 8.10: The RK7/0.01s settling times versus the initial energy for the simplified simulation
perturbation runs of the all-torques case using the set 2 initial inputs. The left plot shows the
settling times for all thirty cases run and uses the dotted black lines to bound values within 3%
of the sample median shown by a solid purple line; values outside these bounds are represented by
empty circles while values within the bounds are represented by filled purple circles. The right plot
shows only those settling times within 3% of the entire dataset median. Pearson’s product-moment
correlation coe�cient and the associated p-value are shown for the data within each plot.
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each of the 30 perturbed initial input set 2 simulations for the bar-magnet-and-hysteresis and the

all-torques cases; the runs which have a settling time below 95% of the sample median are shaded.

The figures show that the normal response of the satellite is to achieve a mostly flat spin

about the major inertia axis BX early in the simulation. The satellite remains in this configuration

until !
X

has dampened to the level of !
Y

. At this point, the rotation is transferred solely to

BX and BZ in the form of roll- and yaw-wobble about the constant magnetizing field. Note that

the sign of the major inertia axis rotation !

X

flips at random; this is anticipated when traveling

through the chaotic sepratrix. The angular velocity response of each simulation with low settling

time is quite di↵erent and easy to distinguish from the normal case. Thus, the angular velocity

response of the simplified simulation output can give clues to its reliability. The response of the

full simulation may be equally helpful in determining its validity.

8.3.5 Summary

An analysis of the energy conservation of each integrator showed that, for PMAC simulation,

higher order Runge-Kutta methods are comparable to LGVI in both energy conservation and com-

putation time. Energy conservation analysis shows that acceptable numeric integrator performance

is dependent on the time step. Generally, RK4 and above at a time step of 0.1s or smaller yields

acceptable energy conservation at the worst-case initial input considered.

Beta angle analysis shows that Runge-Kutta methods clearly outperform LGVI in limiting

absolute attitude error. However, this analysis also shows that the absolute attitude error is di�cult

to minimize for a PMAC simulation with hysteresis in certain initial conditions. This is likely due

to the satellite traveling through the chaotic sepratrix with continued energy dissipation.

The settling time analysis shows that all integrators and time steps converge to one settling

time for each run of identical perturbed initial conditions. This behavior is interpreted as the

simulation converging to the true dynamics of the system. However, the true settling time is

very sensitive to the initial conditions. The perturbation analysis shows that small changes in the

initial state can lead to abnormally low settling times. For the simplified simulation, this abnormal



172

Figure 8.11: The RK7/0.01s angular velocity components versus time for each of the simplified
simulation runs of the bar-magnet-and-hysteresis case using initial input perturbed from input set
2. The axis labels have been omitted from each plot for clarity. For each plot, the vertical axis
ranges from -4 to 4 degrees per second while the horizontal axis ranges from 0 to 30 hours. The
angular velocity components !

X

, !
Y

, and !
Z

are shown in blue, green, and red, respectively. The
runs which result in a settling time less than 95% of the sample median are shaded.
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Figure 8.12: The RK7/0.01s angular velocity components versus time for each of the simplified
simulation runs of the all-torques case using initial input perturbed from input set 2. The axis
labels have been omitted from each plot for clarity. For each plot, the vertical axis ranges from -4
to 4 degrees per second while the horizontal axis ranges from 0 to 30 hours. The angular velocity
components !

X

, !
Y

, and !
Z

are shown in blue, green, and red, respectively. The runs which result
in a settling time less than 95% of the sample median are shaded.
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behavior can be identified by the dynamic response of the simulation over time.

8.4 Results

Before the results are presented, the nominal simulation inputs are defined. Nominal case

outputs such as beta angle, angular velocity, and system energy are presented. This nominal output

is compared to on-orbit data and the magnetic-torque-only case.

8.4.1 Nominal Input

The full PMAC simulation nominal inputs are shown in Table 8.2. The RK4 integrator at

0.1s time step is chosen as the nominal case; simplified simulation showed this combination to have

low rates of settling time error (see Figure 8.8) at moderate computational cost. Also, RK4 leaves

higher orders of Runge-Kutta at the same time step for output comparison.

The hysteresis rod loop parameters are set by the best fit to the measured hysteresis rods

(see Section 7.3.4.3). The moments of inertia are based on the SolidWorks model of the CSSWE

spacecraft. The distance vector from the satellite CG to the geometric center r

d

is also given by

the SolidWorks model. The ap index and F10.7 flux values are given by data from the previous

solar cycle; the selected values overestimate the true solar activity which was actually experienced

over the first ten days on orbit (the true 10-day average values of ap index and F10.7 flux were 6.1

and 113.7·10�22 W·m�2Hz�1, respectively [2]). The early-mission CSSWE TLE is used as input to

the SGP4 orbit propagator.

The base initial angular velocity vector and initial 1-2-3 Euler angles are equivalent to the

simplified simulation initial input set 2, which is defined by early-mission CSSWE MEKF output.

As with the analysis presented in Section 8.3.4, the initial attitude and angular velocity vector are

perturbed by normal Gaussian noise with a standard deviation equivalent to the 1� uncertainty of

the MEKF filter output. This process allows the simulation performance to be examined over a

number of perturbed initial inputs. However, the data from a single initial input set is used as the

nominal output and presented below.
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Table 8.2: Nominal inputs for the full simulation are shown below. Most inputs are based on
CSSWE values; all inputs are given in the body frame when applicable.

Parameter Value Unit
Numeric Integrator RK4
Time step duration h 0.1 s
Simulation Start Date/Time 2012.09.14 00:59:48 UTC
Base Initial 1-2-3 Euler Angle EA123 [13.9 -71.6 104.1] deg
Base Initial angular velocity vector !0 [0.17 -0.97 2.93]T deg/s
Initial magnetic field o↵set � 178.1 deg
X-axis moment of inertia I

xx

2.22·10�2 kg·m2

Y-axis moment of inertia I
yy

2.18·10�2 kg·m2

Z-axis moment of inertia I
zz

5.00·10�3 kg·m2

Bar magnet magnetic moment vector mbar [0 0 0.55]T A·m2

Number of hysteresis rods per body axis [3 3 0]T

Hysteresis rod length 95 mm
Hysteresis rod diameter 1 mm
Initial hysteresis rod magnetic flux density 0 Tesla
Hysteresis rod coercivity H

c

0.3381 A/m
Hysteresis rod remanence B

r

6.0618·10�4 Tesla
Hysteresis rod saturation B

s

0.3000 Tesla
Residual magnetic moment vector Bmres [0.0059 0.0083 -0.0004]T A·m2

Satellite coe�cient of drag C
d

2.4
Distance vector from satellite CG [2.601 -0.218 -8.086]T mm
to geometric center r

d

Satellite surface area by body axis S [0.01 0.03 0.03]T m2

Satellite coe�cient of reflectivity c
R

0.8
3-hour ap index average for the last 57 hours 48
81-day average F10.7 flux 168.5·10�22 W·m�2Hz�1

Daily F10.7 flux for previous day 128.7·10�22 W·m�2Hz�1

Solar pressure at earth P
S

4.5·10�6 N·m�2

TLE

1 90039U 0 12268.58971383 +.00002482 +00000-0 +23852-3 0 00208

2 90039 064.6731 007.9077 0219372 286.2692 203.1718 14.79135411001569
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8.4.2 Nominal Output

The nominal simulation output is shown using a variety of plots. Figure 8.13 shows the

components of angular velocity simulating the first ten days after orbit insertion. Angular velocity

is exchanged between satellite axes in accordance with the di↵erence in mass moment of inertia of

the axis (as expected from Equation 2.3). The roll rate is observed to rapidly oscillate in the early

motion as the satellite is in a full tumble; no single axis dominates the angular velocity vector.

The tumble becomes more controlled approximately 2.5 days after orbit insertion when the motion

is mainly about the major inertia axis. However, the major inertia spin dampens to the level

of intermediate axis while the roll rate steadily climbs. The final settling to a non-zero roll rate

is intuitive; a PMAC satellite cannot rotate about any other axis while the bar magnet remains

parallel to the magnetic field.

Figure 8.14 shows the kinetic, potential, and total rotational energy of the simulated satellite.

A nearly linear decrease in energy is visible over the first four days. Immediately following day

six, the satellite kinetic energy remains at a constant nonzero value. Post-settling variations in the

potential energy are due to magnetic field amplitude changes throughout the satellite orbit.

Figure 8.15 shows the � angle between the BZ-axis and the local magnetic field vector. A

green line has been added to represent settling at �  10�. Although the instantaneous beta changes

rapidly, the maximum beta angle decreases nearly linearly over time, reflecting the system energy

behavior. The simulation finds that the satellite settles to the magnetic field six days after PPOD

deployment. Following settling, the beta angle remains within five degrees of the local magnetic

field.

The next plots show the simulation output before and after settling occurs using 100-minute

(about one orbit) datasets. The pre- and post-settling datasets are the simulation output at orbit

15 and 105, approximately 1 and 7 days after PPOD deployment. Figure 8.16 shows the relative

magnitudes of the external torques acting on the satellite over both orbits.

The bar magnet dominates the other torques in the early mission; post-settling it is at the level
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Figure 8.13: The nominal simulation output body-frame angular velocity vector components are
shown. Yaw (blue) is about the BX (maximum inertia) axis, pitch (green) is about the BY (inter-
mediate inertia) axis, and roll (red) is about the BZ (minor inertia) axis.
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Figure 8.14: The kinetic, potential, and total satellite rotational energy values are shown. The
total energy settles to a constant o↵set from the potential energy due to a non-zero kinetic energy.
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Figure 8.15: The � angle between BZ-axis and the local magnetic field vector is shown. A green
line has been added at the value � = 10�; this is used as the attitude settling threshold.
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of the magnetic residual torque and the gyroscopic torque. Even before settling, the gyroscopic

torque is within an order of magnitude of the bar magnet torque and at times is the dominant

torque. This means that torque-free motion must be considered as it likely has a substantial e↵ect

on the system dynamics. The hysteresis rods lose an order of magnitude of torque from pre- to

post-settling; they are demagnetized by decreasing H-field amplitude cycles as the satellite aligns.

In the early mission, the hysteresis rods dominate the time-varying external torques but by late

mission, the hysteresis torque is at the level of the gravity gradient and drag torques. After settling,

the energy dissipation provided by hysteresis is in equilibrium with the energy input from the non-

magnetic environmental torques. As expected, the eddy current torque is higher during the early

mission which has higher rotation rates.

Figure 8.17 shows the hysteresis loops traced during the early- and late-mission orbits. The

rods experience a much larger range of magnetizing fields before settling occurs. The hysteresis

bounds remain the same throughout the simulation as they are directly set by the hysteresis pa-

rameters (H
c

, B
r

, and B
s

) which do not change. The loops are thin and hard to distinguish in the

early mission. After settling, the magnetization output is observed to produce small loops, always

within the bounds of the inverse tangent loop. These “minor loops” are expected for ferromag-

netic materials experiencing a magnetizing field insu�cient to reach saturation [17]; the simulation

is correctly modeling the low cycle amplitude hysteresis response. As mentioned previously, the

traced hysteresis loop area is equivalent to the energy dissipated from the system. After settling,

the hysteresis dampening is in equilibrium with the energy input by non-magnetic external torques;

the constant magnetic external torques LB and LR cannot add or remove energy from the system.

Figure 8.17 shows a troubling characteristic of the Flatley model using the fitted hysteresis

parameters. In the early mission orbit, an average of 34% of the hysteresis magnetizations need

correction after each simulation time step. The late mission orbit does not require any corrections.

It is di�cult to determine the e↵ect of the correction frequency; removing the correction in the

early mission causes the simulated magnetization to exceed the inverse tangent bounds and become

unrealistic. This is a drawback of the Flatley model, but the e↵ect does decrease slightly for higher-
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Figure 8.16: The magnitude of each external torque acting on the spacecraft is shown for the pre-
settling orbit 15 (top) and the post-settling orbit 105 (bottom). Note the change of scale for the
y-axis between the two plots. Here LGY is the gyroscopic motion torque ([!⇥][I]!), LB is the bar
magnet torque, LH is the hysteresis torque, LGG is the gravity gradient torque, LD is the drag
torque, LSP is the torque due to solar pressure, LR is the magnetic residual torque, and LEC is the
eddy current torque.
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Figure 8.17: The single-orbit X- and Y-axis hysteresis loops simulated before (top) and after
(bottom) the attitude settles. The inverse tangent bounds of the Flatley hysteresis model are
shown. The magnetizations which have been corrected to remain within the inverse tangent bounds
are shown in red; all other output is shown in blue.
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order integrators at low simulation time step values.

8.4.3 High-Order Integrator Comparison

Although the simplified simulation showed the adequate performance of the RK4 at a 0.1s

time step, confidence can be gained by comparison with a higher-order integrator such as the RK7

at the same time step. This section collects the results of this comparison analysis. Figure 8.18

compares the angular velocity components of both integrators. Both integrators display early-

simulation rapid roll rate variation, mid-settling near-zero roll rate, and post-settling constant roll

rate. The amplitude of the roll rate is inverted for the RK7 case; this may be due to chaotic

dynamics during settling. Both datasets show most flat spin about the major inertia axis in the

middle of attitude settling.

Figure 8.19 compares the energy response of the RK4 and RK7 integrators. The responses

are quite similar, although the RK7 dampens the kinetic energy significantly quicker than the RK4

integrator. Note that the RK7 does not experience the jump in kinetic energy one day after PPOD

deployment. This may represent a sensitive dynamics region which happened to increase the energy

for RK4 but not for RK7, causing the RK4 simulation to have a longer settling time.

Figure 8.20 compares the beta angle as generated by the two integrators. The decreased

energy of the RK7 simulation causes the attitude to settle in five days instead of six. The structure

of the beta angle is similar for both cases; both show a linear decrease in the maximum beta angle

over time. Both begin to track the magnetic field at an o↵set before slowly removing the o↵set

over the course of about 36 hours. Further simulations are necessary to determine the cause of the

di↵erence in settling times.

8.4.4 On-Orbit Data Comparison

The output from the simulation may be verified by comparison with data filtered from the

on-orbit attitude measurements of the CSSWE satellite. The initial conditions of the simulation

are set based on the filtered data of the satellite close to its deployment from the PPOD. If the
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Figure 8.18: Angular velocity components of the RK4 and RK7 integrators are shown. Yaw (blue)
is about the BX (maximum inertia) axis, pitch (green) is about the BY (intermediate inertia) axis,
and roll (red) is about the BZ (minor inertia) axis.
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Figure 8.19: The kinetic (blue), potential (green), and total (red) rotational energy as calculated
by the RK4 (top) and RK7 (bottom) integrators.
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Figure 8.20: The � angle between the local magnetic field and the BZ axis as calculated by the
RK4 (top) and RK7 (bottom) integrators is shown. A green line at � = 10� has been added to
show the settling threshold.
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simulation is valid, it should roughly agree with the MEKF output.

The angular velocity is compared in Figure 8.21; similar behavior is observed. The roll rate

shows equivalent variation in the first few days after deployment. The filtered data shows that

the satellite maintains a near-zero roll rate for a short duration 2.5 days after PPOD deployment

before approaching a roll rate of -1�/s until day six. The simulated data remains at a near-zero

roll rate longer before settling to 1�/s shortly before settling. The CSSWE attitude response does

not experience a flat spin about any axis before settling. Instead, the angular velocity is equally

shared between the intermediate- and major-inertia axes over the entire timespan.

Figure 8.22 compares the simulated and measured system rotational energy. The simulation

does not model the antenna deployment event which occurs two hours after deployment and changes

the bar magnet moment from 0.84 A·m2 to 0.55 A·m2 (see Section 6.3.2.1). This event causes the

discontinuity seen in the filtered energy shortly after deployment. However, after the event, the

total energy is roughly equal to the simulated condition. The simulated energy loss is more linear

than the experimental data shows. This is likely because the Flatley hysteresis model accuracy

degrades as the simulated magnetizing field cycle amplitude diverges from the experimental cycle

amplitude used to generate the hysteresis fit parameters (see Section 7.3.4.1).

Because of the limitations of the model, the parameters were fitted to experimental data

collected at ±10 A/m and ±20 A/m. At cycle amplitudes larger than the fitted experimental

datasets (such as shortly after PPOD deploy), the Flatley model will underestimate the hysteresis

dampening. However, if the simulated cycle amplitude is much less than the fitted experimen-

tal datasets, the Flatley model may cease representing hysteresis as a closed loop (as shown Fig-

ures 7.15 and 7.16). The net e↵ect of these errors is to linearize the simulated hysteresis dampening.

The experimental data also shows that the energy dissipation continues after settling, when the

majority of the rotation is about the roll axis; this simulation does not show this behavior.

Figure 8.23 compares the simulated and filtered � angle. CSSWE settles to the local magnetic

field 6.5 to 7.5 days after PPOD deploy; this is comparable to the simulated six day settling

time. The beta angle structure reflects the di↵erences in energy dissipation shown previously; the
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Figure 8.21: The angular velocity vector components as simulated by the RK4 at 0.1s (top) and as
measured by the MEKF output of CSSWE data (bottom). Yaw (blue) is about the BX (maximum
inertia) axis, pitch (green) is about the BY (intermediate inertia) axis, and roll (red) is about the
BZ (minor inertia) axis.
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Figure 8.22: The satellite rotational kinetic (blue), potential (green), and total (black) rotational
energy as simulated by the RK4 at 0.1s (top) and as measured by the MEKF output of CSSWE
data (bottom).
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maximum beta angle decrease is mostly linear for the simulation but less so for the filtered data.

Overall, the filtered on-orbit attitude data is in good agreement with the simulation, which

is able to realistically represent the true dynamics of a PMAC system. The RK4 and RK7 settling

times are 6 and 5 days after PPOD deployment; these estimates are compared to the filtered data

7.5 day settling time and are found to possess errors of 20% and 33%, respectively. The simulation

performance may be compared with the RAX-2 CubeSat mission, which settled after two months

despite being predicted to settle within days (see Section 3.1.3).

Simulating PMAC dynamics is di�cult but the research outlined in this dissertation rep-

resents a significant step forward. It is expected that simulation performance could be improved

by using a hysteresis model which is better able to represent the measured hysteresis loops over a

wider range of cycle amplitudes. Even at the current simulation performance levels, the settling

time estimate is quite useful for satellite mission planning purposes.
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Figure 8.23: The � angle between the local magnetic field and the BZ axis as simulated by the
RK4 at 0.1s (top) and as measured by the MEKF output of CSSWE data (bottom). A green line
is shown marking � = 10�; when the angle remains below this threshold the system is considered
settled. The 3� uncertainty bounds of the � angle are shown in red for the MEKF output dataset.


