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Abstract. When working with space systems the keyword is resources. For a
satellite in orbit all resources are sparse and the most critical resource of all is
power. It is therefore crucial to have detailed knowledge on how much power
is available for an energy harvesting satellite in orbit at every time – especially
when in eclipse, where it draws its power from onboard batteries. This paper
addresses this problem by a two-step procedure to perform task scheduling
for low-earth-orbit (LEO) satellites exploiting formal methods. It combines
cost-optimal reachability analyses of priced timed automata networks with a
realistic kinetic battery model capable of capturing capacity limits as well as
stochastic fluctuations. The procedure is in use for the automatic and resource-
optimal day-ahead scheduling of GomX–3, a power-hungry nanosatellite cur-
rently orbiting the earth. We explain how this approach has overcome existing
problems, has led to improved designs, and has provided new insights.

1 Introduction

The GomX–3 CubeSat is a 3 kg nanosatellite designed, delivered, and operated by
Danish sector leader GomSpace. GomX–3 is the first ever In-Orbit Demonstration
(IOD) CubeSat commissioned by ESA. The GomX–3 system uses Commercial-off-
the-shelf (COTS) base subsystems to reduce cost, enabling to focus on payload devel-
opment and testing. GomX–3 was launched from Japan aboard the HTV–5 on August
19, 2015. It successfully berthed to the ISS a few days later. GomX–3 was deployed
from the ISS on October 5, 2015. Figure 1 shows the satellite and its deploymemt.

Both GomSpace and ESA are interested in maximizing the functionality of their
nanosatellite missions. As such, GomX–3 has been equipped with a variety of techni-
cal challenging payloads and components, among them: (i) 3-axis rotation and point-
ing with a precision of 2◦ or less, (ii) in-flight tracking of commercial aircrafts, (iii)
monitoring signals from geostationary InmarSat satellites, and (iv) high-speed down-
linking to stations in Toulouse (France) or Kourou (French Guiana).

For a satellite in orbit all resources are sparse and the most critical resources
of all is power. Power is required to run the satellite, to communicate, to calculate,
to perform experiments and all other operations. Detailed knowledge on the power
budget is thus essential when operating a satellite in orbit. Furthermore, in a satellite
not all power is used as it is generated. The satellite passes into eclipse each orbit
and during those periods it must draw power from its batteries. This challenge is
especially apparent for nanosatellites where not only the actual satellite but also
the resources are very small. An operator of such a spacecraft is thus faced with a



Fig. 1. The final GomX–3 nanosatellite (left) and its deployment from the ISS (right) to-
gether with AAUSAT5 (picture taken by Astronaut Scott Kelly).

highly complex task when having to manually plan and command in-orbit operations
constantly balancing power and data budgets.

In this paper we report on our joint activities, part of the EU-FP7 SENSATION
project, to harvest formal modelling and verification technology, so as to provide sup-
port for commanding in-orbit operations while striving for an efficient utilization of
spacecraft flight time. Concretely, we have developed a toolchain to automatically
derive battery-aware schedules for in-orbit operation. The heterogeneous timing as-
pects and the experimental nature of the application domain make it impossible to
use traditional scheduling approaches for periodic tasks.

The schedules we derive are tailored to maximize payload utilisation while mini-
mizing the risk of battery depletion. The approach is flexible in the way it can express
intentions of spacecraft engineers with respect to the finer optimisation goals. It comes
as an automated two-step procedure, and provides quantifiable error bounds.

For the first step, we have developed a generic model of the GomX–3 problem
characteristics in terms of a network of priced timed automata (PTA) [3]. This model is
subjected to a sequence of analyses with respect to cost-optimal reachability (CORA)
with dynamically changing cost and constraint assignments. We use Uppaal Cora
for this step. The latter is a well understood and powerful tool to find cost optimal
paths in PTA networks [4]. This first step takes the battery state into consideration
by means of a linear battery representation (owed to the fact that nonlinearities are
not supportable in CORA). As a result, any schedule generated in this step has a risk
of not being safe when used in-orbit, running on a real battery and with real payload.

To account for this problem, a second step validates the generated schedule on a
much more accurate model of the on-board battery, a model that includes nonlinear-
ities and also accounts for the influence of stochastic perturbations of load or battery
state. For this step, we employ a stochastic enhancement [5] of the kinetic battery
model [10] (KiBaM) with capacity bounds. As a result it is possible to discriminate
between schedules according to their quantified risk of depleting the battery. Low risk
schedules are shipped to orbit and executed there. The satellite behaviour is tightly
monitored and the results gained are used to improve the model as well as the overall
procedure.

The entire toolchain has been developed, rolled out, experimented with, and tai-
lored for in-the-loop use when operating the GomX–3 satellite. We report on experi-
ences gained and lessons learned, and highlight the considerable prospect behind this
work, in light of the future development in the space domain.

http://sensation-project.eu/


2 Prerequisites

Priced Timed Automata. The model of Timed Automata (TA) [2] has been estab-
lished as a standard modelling formalism for real time systems. A timed automaton
is an extension of finite state machines with non-negative real valued variables called
clocks in order to capture timing constraints. Thus, a timed automaton is an anno-
tated directed graph over a set of clocks C with vertex set (called locations) L and edge
set E. Edges and locations are decorated with conjunctions of clock constraints of the
form c ./ k where c ∈ C, k ∈ N and ./ ∈ {<,≤,=,≥, >}. For edges such constraints
are called guards, for locations they are called invariants. Edges are additionally dec-
orated with reset sets of clocks. Intuitively, taking an edge causes an instantaneous
change of location and a reset to 0 for each clock in the reset set. However an edge
may only be taken if its guard and the target location’s invariant evaluate to true. If
this is not that case the current location remains active, if it’s invariant permits, and
clocks increase continuously with their assigned rates, thus modelling the passing of
time.

In order to reason about resources, TAs are enriched with non-negative integer
costs and non-negative cost rates in the form of annotations for edges and locations
respectively [3]. The result are priced timed automata (PTA). The intuition is that cost
accumulates continuously in a proportional manner to the sojourn time of locations
and increases discretely upon taking an edge as specified by the respective annotations.

Definition 1 (Priced Timed Automata). Let C be a set of clocks and B(C) be
the set of all clock constraints as described above. A priced timed automaton is a tuple
(L,E, `0, inv, price) where L is a set of locations, E ⊆ L × B(C) × 2C × L is a set of
edges, `0 is the initial location, inv : L → B(C) assigns invariants to locations, and
price : L ∪ E → N assigns costs and cost rates to edges and locations respectively.

To meet space requirements we omit the formal semantics of PTA, and instead refer
to [3] for a complete development.

A common problem to consider in the context of PTA is that of computating the
minimum cost to reach a certain target location in a given PTA. This so-called cost-
optimal reachability analysis (CORA) receives dedicated attention in the literature
[4,8] and is well-known to the community. The CORA is implemented in a number of
tools, most prominently Uppaal Cora [1]. As input Uppaal Cora accepts networks
of PTAs extended by discrete variables, and thus allows for modular formalisation of
individual components. The set of goal states is characterised by formulae over the
variables in the network of PTAs.

Kinetic Battery Model. Batteries in-the-wild exhibit two non-linear effects widely
considered to be the most important ones to capture: the rate capacity effect and the
recovery effect. The former refers to the fact that if continuously discharged, a high
discharge rate will cause the battery to provide less energy before depletion than a
lower discharge rate. Thus a battery’s effective capacity depends on the rate at which
it is discharged. The latter effect describes the battery’s ability to recover to some
extent during periods of no or little discharge. We introduce the kinetic battery model
(KiBaM) as the simplest model capturing these effects. It is known to provide a good
approximation of the battery state of charge (SoC) across various battery types [5].
For a survey on battery models providing a context for the KiBaM we refer to [6,7].
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Fig. 2. The two-wells depiction of the KiBaM (left) and a SoC evolution trace over time
under a piecewise constant load (right).

The KiBaM divides the stored charge into two parts, the available charge and the
bound charge. When the battery is strained only the available charge is consumed
instantly, while the bound charge is slowly converted to available charge by diffusion.
For this reason the KiBaM is often depicted by two wells holding liquid, interconnected
by a pipe, as seen in Figure 2.

The diffusion between available and bound charge can take place in either direction
depending on the amount of both types of energy stored in the battery. Both non-
linear effects are rooted in the relatively slow conversion of bound charge into available
charge or vice versa. The KiBaM is characterized by two coupled differential equations:
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Here, the functions a(t) and b(t) describe the available and bound charge at time t
respectively, ȧ(t) and ḃ(t) their time derivatives, and I(t) is a load on the battery. We
refer to the parameter p as the diffusion rate between both wells, while parameter
c ∈ [0, 1] corresponds to the width of the available charge well, and 1− c is the width
of the bound charge well. Intuitively, a(t)/c and b(t)/(1− c) are the level of the fluid
stored in the available charge well and the bound charge well, respectively. Figure 2
shows a SoC trace of the KiBaM ODE system. We shall denote the KiBaM SoC at
time t as [at; bt] and consider I(t) to be piecewise constant.

Adding Randomness and Capacity Limits. The KiBaM model has been extended with
capacity limits (say amax for the available charge and bmax for the bound charge), as
well as means to incorporate stochastic fluctuations in the SoC and the load imposed
on the battery. Both extensions come with their own set of technical difficulties.
For a complete technical development of this we refer to [5]. In this setting SoC
distributions may not be absolutely continuous, because positive probability may
accumulate in the areas {[0; b] | 0 < b < bmax} where the available charge is depleted
and {[amax; b] | 0 < b < bmax} where the available charge is full. Therefore, one works
with representations of the SoC distribution in the form of triples

〈
f, f̄, z

〉
where

– f is a joint density over ]0, amax[ × ]0, bmax[, which represents the distribution of
the SoC in the area within the limits,

– f̄ is a density over {amax} × ]0, bmax[ and captures the bound charge distribution
while the available charge is at its limit amax,

– z ∈ [0, 1], the cumulative probability of depletion.

It is possible to analytically express an under-approximation of the SoC distribution〈
fT , f̄T , zT

〉
after powering a task (T, g) when starting with the initial SoC distri-

bution
〈
f0, f̄0, z0

〉
, where T is a real time duration and g is the probability density
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Fig. 3. An exemplary battery with amax = bmax = 5 ·106, c = 0.5, p = 0.0003 with an initially
uniform SoC density over the area [0.3, 0.7] amax × [0.3, 0.7] bmax (left), subjected to a task
sequence (500,U [3000, 3600]), (600,U [−3300,−3900]) with U denoting uniform distribution.
Roughly 75% of the SoC density flows into the depletion area (negative available charge)
after powering the first task and is thus accumulated in z (middle). The remaining 25% are
considered alive and transformed further. Some of it even reaches the capacity limit amax of
the available charge (right).

function over loads. We omit the derivation of these expressions due to their lengthi-
ness. Sequences of tasks can be handled iteratively, by considering the resulting SoC
distribution after powering a task to be the initial SoC distribution for powering the
next task.

Figure 3 displays the SoC distributions while powering an exemplary task se-
quence. Each distribution

〈
f, f̄, z

〉
is visualized as three stacked plots: f is represented

in the heatmap (middle), the curve of f̄ in the small box (top), z in the small box as
a colour-coded probability value representing the cumulative depletion risk (bottom).

3 Modelling the GomX–3 nanosatellite

GomX–3 is a 3 liter (30 × 10 × 10cm, 3kg) nanosatellite launched in October 2015
from the ISS. It’s mission payloads are threefold: Tracking of ADS-B beacons emitted
by commercial airplanes, testing a high-rate X-Band transmitter module for in-space
adequacy, and monitoring spot-beams geo-stationary satellites belonging to the In-
marSat family, via an L-Band receiver. In addition, it features a UHF software de-
fined radio module for downlinking collected data to – and uplinking new instruction
from the GomSpace base station in Aalborg, Denmark. In the sequel, we refer to the
operation of one of these payloads as a job. Each of these jobs comes with its own
set of satellite attitude configurations, making an advanced 3-axis attitude control
system indispensable. This attitude control uses gyroscopes and magnetorquers to
enable the satellite to slew into any dedicated position with a precision of up to 2◦.
It is especially power-hungry.

As an earth-orbiting satellite, GomX–3 naturally enters eclipse. To continue oper-
ation, it draws the necessary power to sustain its operation from an onboard battery
system. These batteries are, in turn, charged by excess energy harvested during inso-
lation periods by solar panels that cover any non-occupied surface.



Since its launch, GomX–3’s follows the roughly equatorial orbit of (and below)
the ISS. Therefore, insolation periods as well as operation windows for the different
jobs are well predictable over the time horizon of about a week ahead, yet they
are highly irregular. Exploiting the pre-determined attitude configurations per mode
of operation, the net power balance of every job can be predicted by the in-house
GomSpace PowerSim tool. This information is the essence of the power-relevant
behaviour of GomX–3. In order to understand their joint implications for the energy
budget of GomX–3, it is important to accurately model these power-relevant aspects
of the satellite components, and their interplay.

3.1 Objectives

In broad terms, the main mission goal of GomX–3 is to maximize the amount of
jobs carried out without depleting the battery. The concrete objectives spelled out by
GomSpace engineers changed several times along the mission. This meant that the
models have to have the necessary flexibility needed to reflect the requirements once
they are made formal.

GomX–3 switches to Safe Mode if the battery SoC falls below a given threshold.
For GomX–3 this threshold is at 40% of the battery’s capacity. In Safe Mode, all
non-essential hardware components are switched off, preventing of the satellite being
productive. The primary objective is thus to avoid Safe Mode, while maximizing
secondary objectives. Several such secondary objectives need to be taken into account.

– Whenever possible the UHF connection to the GomSpace base station must be
scheduled and maintained throughout the entire operation window in order to
enable monitoring the status of GomX–3 and to uplink new instructions if need
be. This is crucial to maintain control over the satellite and thus considered vital
for the success of the mission.

– Independent of the satellite attitude, the ADS-B helix antenna is able to receive
ADS-B beacons. Thus this hardware module will be active at all times, thereby
constantly collecting data of airplane whereabouts.

– The X-Band windows are small, as the downlink connection can only be estab-
lished if the satellite is in line of sight and close enough to the receiving ground
station. The corresponding downlink rate, however, is relatively high.

– L-Band jobs will have job windows as long as an orbit duration but vary a lot
depending the time of the year, and will collect a lot of data if successful. The
variations in window lengths can be observed in Section 5, where actual schedules
are visualized.

– L-Band jobs are to become as balanced as possible across the available InmarSats.
– Jobs filling their entire job window are most valuable. Jobs that have been aborted

early or started late are not considered interesting.
– L-Band and X-Band jobs are mutually exclusive, as they require different atti-

tudes. UHF jobs may be scheduled regardless of the current attitude, even when
L-Band or X-Band jobs are currently executed.

– Only downlinked data are useful, thus the time spent on data collection payloads
(L-Band, ADS-B) and downlink opportunities (X-Band) needs to be balanced in
such a way that only a minimal amount of data needs to be stored temporarily
in the satellite’s memory. This induces the need to weigh the data collection rate
and the downlink speed against each other.



Based on these observations and the expertise of GomSpace engineers, it was deemed
that two fully executed X-Band jobs are enough to downlink the data of one successful
L-Band job together with the ADS-B data collected in the meanwhile.

3.2 PTA Modelling

As the central modelling formalism PTAs are employed when modelling the behaviour
of GomX–3, with special emphasis being put on flexibility w.r.t. the optimization
objective. In order to allow for easy extensibility, the modelling was purposely kept
modular and generic. Notably, the TA formalism is not expressive enough for the
nonlinearities of the kinetic battery model. Therefore we use a simple linear model
(intuitively corresponding to a single well holding liquid) instead, and account for this
discrepancy later. The component models belong to the following categories.

Background load comprises the energy consumption of modules that are always
active, including the ADS-B module for tracking airplanes, the gyroscopes and
magnetorquers (even though not at full power) for keeping the attitude invariant.

Jobs are dealt with in a generic way, so that only the common characteristics are
modelled. A job has a finite time window of when it can be executed, it may
be skipped, it may require an a priori preheating time (to ramp up the physical
modules related to the job) as well as a specific attitude, it may need to activate
a set of related modules inducing piecwise constant loads, its window may occur
in a periodic pattern.

Battery represents a relatively simple linear battery which can support piecewise
constant loads. It keeps track of its (one-dimensional) state of charge and updates
that based on the (dis)charge rate and the time until the load changes again.
Since the battery is modelled as an automaton, the system can monitor and take
decisions based on the remaining battery charge.

Attitude represents the predetermined attitude requirements of each job and the
worst case slewing time of 5 minutes.

Insolation is a simple two-state automaton (sun and eclipse) based upon the pre-
dicted insolation times, triggering a constant energy infeed due to the solar panels.

Among these components, the PTAs modelling the battery and the job aspects are the
most interesting. They are depicted in Figure 4 and explained in more detail below.

JobProvider: This automaton provides the interface between multiple arrays rep-
resenting the job opportunities as well as their implied preheating times, and
the actual Job automaton. It waits for a job window, discriminating whether the
job needs preheating or not, and broadcasts signals triggering the actual deci-
sion making. In the Idle location, being initial, it waits for the global clock gc

to hit a certain job preheat time event (stored in the array jobPreheatTime),
sets the time variable to the current time, and notifies the Job automaton to
start preheating over a the dedicated preHeat[jid] channel, where jid uniquely
identifies a certain job type. Upon this notification it switches into the PreHeat
location and waits for the actual job to start, i.e. the global time reaching the
expected start time of the job identified by jid, consequently transitioning into
location Available, where, in turn it waits for completion of the job (gc reaching
jobEndTime[jid]), switching into location Idle yet again, all the while notifying
its environment on the respective dedicated channels.



Fig. 4. The JobProvider automaton (top left), the Job instance automaton (bottom) and
the Battery automaton (top right).

Job: This automaton represents the execution or skipping of a job. It starts in its Idle
location, waiting to be notified of impending preheating duties. At this point the
take-or-skip decision is taken, as witnessed by the two outgoing transitions into
locations labelled Skip and Align. A job is either skipped because it is not optimal
to take it, or because the attitude requirements don’t match the current attitude
of the satellite because of an already ongoing job. If the job is skipped, cost
is accumulated with rate costRate(jid) over the duration of the job, effectively
returning into location Idle. If it is taken, attitude requirements of the scheduled
job are checked via the guard isAligned(jid), upon which the satellite starts
slewing (location Slewing) to the correct attitude (location Correct Attitude) if
need be. Upon notification, the job is executed (Start → End → Check Attitude)
triggering the battery via channel bUpdate to update its SoC, and finally checks
whether it has to change attitude to minimize atmospheric drag using guards
hasToSlewBack(jid) to finally return eventually to location Idle.

Battery: This model represents a simple linear battery with capacity that can be
(dis)charged with piecewise constant loads. It is notified of load changes via chan-
nel bUpdate, upon which it computes the length of a constant load interval via
global integer variables new time and old time, and subtracts the result multi-
plied by rate from its internal SoC l, upon which it ends up in location Check.
A check is performed whether the SoC fell below a threshold lb, upon which we
either transition into (and stay in) the Depletion location or return to Idle to power
another task.

3.3 Cost Model and Reachability Objectives

In the following we explain how the objectives derived by GomSpace engineers were
turned into constraints and cost parameters of the PTA model.

The Safe Mode threshold is kept variable and must be set before scheduling. It
appears as lb (for lower bound) in the automata models. Depending on the degree
of aggressiveness of the intended schedule, it can either be set close to the real Safe
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Mode threshold of 40% or it can be set higher, for example to 55%, thereby adding
an implicit safety margin.

Uppaal Cora computes cost-minimal schedules. Therefore, we interpret the price
annotations of PTA transitions as penalties for skipped jobs. Likewise cost rates in
states accumulate penalty per time unit a job window is left unused. An optimal
schedule will then have the property that the minimal portion of important jobs
windows was left unexploited.

An immediate consequence of this setup is that UHF jobs have a high penalty
if skipped, as they are supposed to be scheduled every time they are possible. For
L-Band and X-Band jobs, the number of jobs scheduled should result in an average
ratio of 1/2, according to the GomSpace directives. To arrive there, we proceed as
follows. Let ∆X and ∆L denote the job windows length expectations of X-Band and
L-Band jobs, respectively. Then the cost rate for skipping L-Band and X-Band window
portions is set 2 · ∆X and ∆L, respectively. Likewise, the L-Band jobs on different
InmarSat are internally viewed as different jobs. Their cost rates for skipping should
be set equal.

In order to generate an optimal schedule from the network of PTAs up to a certain
time horizon (treated as an orbiting count), we need to define the goal set of states
to be used in a reachability objective as supported by Uppaal Cora. To this end,
we simply introduce a small automaton that counts the orbits already scheduled for
and manages this number globally, say in a variable n. A query for a schedule of n
orbits can then easily be formulated as ∃ ♦(n = 20).

4 The Scheduling Workflow

The scheduling workflow, depicted in Figure 5, loops through a two-step procedure of
schedule generation and schedule validation. The latter is needed to account for the
inaccuracies of the simple linear battery model, which is used for schedule generation,
relative to real battery kinetics. Therefore any generated schedule is validated along
the stochastically enhanced KiBaM known to be sensitive to such effects. If the val-
idation does not exhibit good enough guarantees, the current schedule is discarded
and excluded from the generation step, and a new schedule is computed. Otherwise
it will be accepted, upon which we break the loop and ship the schedule to orbit.



4.1 Schedule Generation

The mission times to be considered for automatic scheduling span between 24 and 72
hours. Longer durations are not of interest since orbit predictions are highly accurate
only for a time horizon of a handful of days, and because GomX–3 is as a whole an
experimental satellite, requiring periods of manual intervention. However, even a 24
hour schedule computation constitutes a challenge for plain CORA, since the number
of states grows prohibitively large.

Heuristics. The state-space explosion can, to certain extend, be remedied by using
heuristics, i.e. exclusion of certain schedules at the risk of losing optimality. Here is a
brief overview of heuristics used:

1. Take every job if battery is almost full. Job opportunities will be taken if
the battery is close to being full, since the battery cannot store more energy
anyway. This minimizes the risk of not being able to harvest energy due to a full
battery.

2. Force discard of schedules on depletion. This simple, yet effective heuristic
forces the PTA network into a dedicated deadlock location (Depletion) whenever
the battery automaton reaches a non positive SoC, resulting in the schedule to
be dropped.

The following heuristics are specific to objectives expressed by the engineers.

3. An L-Band job precedes two X-Band jobs. To avoid storage of large amounts
of data on the satellite, we bound the ratio of data collection and downlink jobs. A
ratio rX/rL can be approximated greedily by adding a global variable r (initially
0) as well as guards to the Job automaton such that X-Band jobs are scheduled
only if r ≥ rL and L-Band jobs are scheduled only if r < (rX + rL) · rX. Upon
scheduling an X-Band and L-Band job, we set r := r− rL and r := r+ rX respec-
tively. With rX := 2 and ry := 1 schedules never start with an X-Band job and in
the long run, the ratio of X-Band and L-Band jobs stays between 1 and 2/1.

4. Keep L-Band jobs in balance across InmarSats. Similarly to the realization
of the above heuristic we bound the difference among L-Band jobs on the relevant
InmarSats to at most 2.

5. Always schedule UHF jobs. Instead of penalizing skipped UHF jobs by an-
notations of large costs (to enforce their scheduling), we enforce them on the
automaton level, omitting any cost annotation.

6. Impose upper bound on discharging loads. This heuristic does what it says.

Especially heuristic 6 proves useful in several ways. First, the KiBaM used in the
validation step yields less energy before depletion if subjected to high loads due to the
rate-capacity effect (that is not captured by the linear battery model). Second, high
loads are reached when UHF jobs are scheduled in addition to an L- or X-Band job.
Such situations seem lucrative to Uppaal Cora, given that they don’t accumulate
much cost. Yet, they often result in schedules that leave the battery (almost) empty.
Third, the bound can be chosen such that parallel experiments, and thus high loads,
occurs only during insolation, but not in eclipse.

To give some insight into the effect of each heuristic on the computation with
Uppaal Cora, we provide a comparison by means of an example, reported in the



following table. In the example all the above mentioned heuristics were implemented
(first row), except for the one mentioned.

heuristics used total CORA time states explored optimal value computed

all 2.6 172452 262792
all but 1 10.2 700429 262792
all but 2 80.7 5474775 262792
all but 3 8.9 592233 258081
all but 4 3.7 224517 262792
all but 5 2.7 175191 262792
all but 6 86.1 6029126 243269

It becomes apparent that heuristic 2 and 6 are the most effective. Most of the combi-
nations studied induce the schedule depicted below, where job windows of a certain
type, i.e L-Band on different InmarSats (L1, L2), X-Band (X) and UHF, are dis-
played as black (grey) bars if they were indeed taken (skipped).

07:30:00 11:30:00 15:30:00 19:30:00 23:30:00 03:30:00 07:30:00 11:30:00 15:30:00
UHF

X

L1

L2

scheduled not scheduled

At first sight, dropping heuristics 3 or 6 lead to superior solutions. Without heuris-
tic 3 one more X-Band job can indeed be scheduled, explaining why this schedule
is cheaper in terms of accumulated penalty. It is however scheduled before the first
L-Band job, rendering it useless because there is nothing to downlink. As expected,
without heuristics 6 Uppaal Cora predominately schedules UHF jobs parallel to X-
or L-Band jobs, thereby straining the battery. The large number of states explored
indicates that the state space exploration in this case is often misguided into eventual
battery depletion.

Dynamic scheduling. Another issue is that Uppaal Cora’s optimization criterion is
static, i.e. the prices cannot be updated based on the schedule generated so far. This
is contrasted by the GomSpace engineering intention of having a dynamic scheduling
approach. We take care of this by viewing the PTA network as being parameterized,
i.e. as templates that need to be instantiated by concrete values. This enables us to
divide the scheduling interval into disjoint subintervals that can be scheduled indi-
vidually, with distinct scheduling objectives and prices, all the while carrying over
resulting quantities as initial values to the subsequent subinterval to be scheduled.
Important quantities that need to be passed on are the resulting battery state, the
number of individual jobs already scheduled and the state of the PTA network at the
end of the previous subinterval. This information allows us to adjust the prices and
scheduling objective at the end of each subinterval, depending on the requirements
previously fixed. The subschedules are then conjoined to a schedule for the actual
time interval. This line of action is a trade-off between optimality and being dynamic,
as it implements a greedy heuristics.

Given the back-to-back nature of this approach, it is undesired to start with an
almost empty battery after a scheduling interval. We require the battery to have



a certain minimum charge at the end of the schedule. This requirement translates
directly to a reachability query on the PTA network: ∃ ♦(n = 20 ∧ l ≥ 75000000),
where l is the global variable representing the battery SoC.

4.2 Schedule Validation

As mentioned, Uppaal Cora’s expressiveness does not allow for direct modelling of
the KiBaM as a PTA. Instead the schedule computed is based on the simple linear
model, that is known to not capture important effects that can be observed from
measurements of real batteries. In order to validate whether the computed schedule
truly doesn’t violate the constraints we imposed, we need to validate the schedule
along the above mentioned stochastic KiBaM with capacity limits. In fact, such a
schedule can be seen as a sequence of tasks (Tj , Ij), which we can immediately be
used as input to the method to bound the cumulative risk of premature battery
depletion of the computed schedule. The initial KiBaM SoC distribution is assumed
to be a truncated 2D Gaussian around the initial battery state given to the PTA
network and white noise is added to the loads of the tasks. If the validation step
exhibits a low enough depletion risk, the computed schedule is accepted, otherwise
the schedule is excluded and another schedule is computed.

4.3 Schedule Shipping

In order to uplink a schedule to GomX–3, several comma seperated files (.csv) are
generated. Each file contains a list of job opportunities of a certain type, for example
L-Band (see below), given by two timestamps representing the start time and the end
time of the job window respectively, the implied duration of the timestamps, as well
as a flag that shows whether the opportunity should be taken. One such file could be
read as follows:

Access Start Time (UTCG) Stop Time (UTCG) Duration (sec) Scheduled

1 17 Nov 2015 00:38:38.922 17 Nov 2015 01:09:42.642 1863.720 1
2 17 Nov 2015 02:16:24.134 17 Nov 2015 02:45:23.914 1739.781 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
15 17 Nov 2015 23:41:20.490 18 Nov 2015 00:12:38.983 1878.493 0

5 Results

A number of successful experiments have been carried out on GomX–3 in-orbit, so as
to evaluate and refine our method, focussing on the determination of schedules to be
followed for the days ahead. These in-orbit evaluations have successfully demonstrated
the principal feasibility and adequacy of the approach, as we will discuss in this
section.

In Figures 6–8 three representative in-orbit experiments are summarized. The
schedules are visualised as three stacked plots of data against a common time line
(left). The bottom ones are Gantt charts showing which jobs are scheduled (black
bars) and which job windows are skipped (grey bars) respectively. The plots in the
middle display the loads imposed by the jobs as predicted (blue) and as actually
measured (red) on GomX–3. The top plots presents the battery SoC of the linear
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Fig. 6. Schedule November 17, 2015 midnight to November 18, 2015 midnight.

battery (green) as predicted by Uppaal Cora as well as the actual voltage (yellow)
logged by GomX–3. Voltage and SoC are generally not comparable. However, both
quantities exhibit similar tendencies during the (dis)charging process. The battery,
voltage and load curves have all been normalized to the interval [0, 1] for comparison
reasons.

On the right, the three components of the SoC density resulting from the validation
step are displayed, obtained by running the generated schedule along the stochastic
KiBaM with capacity limits. It is to be interpreted as in Figure 3. The most crucial
part is at the bottom of the plot, quantifying the risk of entering Safe Mode as specified
by the GomSpace engineers (40%).

The data is summarized in the following table, that reports on the value chosen
as internal depletion threshold to the battery automaton, the initial SoC provided
to Uppaal Cora, the minimal SoC along the schedule generated by Uppaal Cora,
the depletion risk as calculated by the stochastic KiBaM validation step and how
often GomX–3 actually entered Safe Mode.

Experiment Duration initial Depletion Min. SoC Depletion Safe Mode
dd.mm.yy hh:mm (h) SoC (%) threshold (%) (%) risk (%) entered (nr.)

17.11.15 00:00 24 85 40 40.3 20 2
14.02.16 00:00 36 90 55 69 < 10−50 0
20.03.16 07:00 60 90 55 55.9 < 10−2 0

November 2015. The schedule presented in Figure 6 spans November 17, 2015. It is a
schedule that optimizes for maximum L-Band payload operations, yielding 4 L-Band
operations and 1 X-Band operation together with the 5 UHF groundstation passes.
The battery SoC and the measured battery voltage show a close correspondence.
GomSpace reported that GomX–3 entered Safe Mode twice, if only for a short period
of time.

February 2016. Figure 7 presents a schedule spanning one and a half day, starting
on February 14, 2016. It illustrates how optimized scheduling can be utilized to not
only take power limitations into consideration but also handle secondary constraints
like data generation and data downlinking balance via L-Band and X-Band tasks.
There is a noticeable difference in the length of L-Band job windows, relative to the
earlier experiment reported, as a consequence of experiences gained by the engineers
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Fig. 7. Schedule February 14, 2016 midnight to February 15, 2016 noon

in the meanwhile. The initial SoC and the internal depletion threshold were The plot
exhibits a drift between battery SoC and measured voltage around 3 PM of the first
day, after initially showing a close correspondence, indicating that the battery is in
a better state relative to our pessimistic predictions. The GomSpace engineers were
able to track down this drift to a mismatch in the net power balance computed as
input to the toolchain.

March 2016. The third schedule we present (Figure 8) is the longest in duration,
spanning from the March 20 at 7 AM to March 22 at 7 PM. After initial close
correspondence of SoC and voltage, around 18 hours into the test run we observe
a slight but continuous drift between predicted battery SoC and measured voltage,
yet not as steep as in the February test run.

6 Discussion and Conclusion

This paper has presented a battery aware scheduling approach for low-earth orbit-
ing nano satellites. The heterogeneous timing aspects and the experimental nature of
this application domain pose great challenges, making it impossible to use traditional
scheduling approaches for periodic tasks. Our approach harvests work on schedulabil-
ity analysis with (priced) timed automata. It is distinguished by the following features:
(i) The TA modelling approach is very flexible, adaptive to changing requirements,
and particularly well-suited for discussion with space engineers, since easy-to-grasp.
(ii) A dynamic approach to the use of cost decorations and constraints allows for a
splitted scheduling approach optimising over intervals, at the (acceptable) price of po-
tential sub-optimality of the resulting overall schedules. (iii) A linear battery model
is employed while computing scheduling, but prior to shipping any computed sched-
ule is subjected to a quantitative validation on the vastly more accurate Stochastic
KiBaM, and possibly rejected. This last aspect is very close in spirit to the approach
developed in [9], where a simulation-based analysis of computed schedules is used to
validate or refute CORA schedules, under a model with stochastic breakdowns and
repairs of production machinery. The stochastic KiBaM validation step is not based
on simulation, but exact (or conservative) up to discretisation.

The GomX–3 in-orbit experiments have demonstrated an indeed great fit between
the technology developed and the needs of the LEO satellite sector. The schedules
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generated are of unmatched quality: It became apparent that relative to a comparative
manual scheduling approach, better quality schedules with respect to (i) number of
experiments performed, (ii) avoidance of planning mistakes, (iii) scheduling workload,
and (iv) battery depletion risk are provided. At the same time, the availability of
scheduling tool support flexibilises the satellite design process considerably, since it
allows the GomSpace engineers to obtain answers to what-if questions, in combination
with their in-house PowerSim tool. This helps shortening development times and
thus time-to-orbit.

State of the art technology and very rapid development cycles will continue to be a
crucial part of the nanosatellite market. However, with product maturation happening
through fully operational missions like GomX–3, the push towards larger nanosatellite
constellations has been going on for some time in the industry. In fact, GomSpace
will launch a 2 spacecraft constellation (GomX–4 A and B) in 2017 and is actively
pursuing several projects with much larger constellations. Deploying constellations
of a large number of satellites (2 to 1000) brings a new level of complexity to the
game. The need to operate a large number of satellites asks for a larger level of
automation to be used than has previously been the case in the space industry. The
technology investigated here is beneficial in terms of optimization and planning of
satellite operations, so as to allow for more efficient utilization of spacecraft flight
time. A spacecraft operator is faced with a highly complex task when having to plan
and command in-orbit operations constantly balancing power and data budgets. This
leads to the fact that for larger constellations tools for optimization, automation and
validation are not only a benefit, but an absolutely necessity for proper operations.
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